Invariants of Links and 3-Manifolds, Their Properties and Topology

链接和 3-流形的不变量、它们的性质和拓扑

基本信息

  • 批准号:
    9971350
  • 负责人:
  • 金额:
    $ 7.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9971350PI: Thang LeTitle: "Invariants of knots and 3-manifolds, their properties and topology"Abstract: This research studies quantum and finite type invariants of3-manifolds and their relationships with classical topological andgeometrical invariants. The investigator will continue to studythe universal finite type invariant of homology 3-spheres which hedeveloped in joint work with J. Murakami and T. Ohtsuki. Inparticular, he plans to develop the theory further to includeother 3-manifolds and to study the topological quantum fieldtheory associated with the Le-Murakmi-Ohtsuki invariant which isdifferent from those associated with usual quantum invariants. Hewill try to understand the topology of these new invariants andfind their applications. One of the projects is to study relationsbetween the hyperbolic, or more general, simplicial, volume ofknots and their quantum invariants (to prove theKashaev-Murakami-Murakami conjecture).The theory of knots and 3-manifolds is an old branch ofmathematics which has gained renewed interest among mathematiciansand physicists after the discovery of the Jones polynomial and itsrelation to theoretical physics (quantum field theory, high energyphysics). In fact, it is now one of the most active domains inmathematics. Many results of knot theory may also findapplications in molecular biology. To classify knots and3-manifolds, mathematicians use "invariants". This researchproject studies new classes of invariants of knots and 3-manifoldsand their relationships with the classical ones. The newinvariants are very powerful in distinguishing knots and3-manifolds.
提案:DMS-9971350 PI:Thang Le题目:“不变量的纽结和3-流形,他们的性质和拓扑“摘要:本研究研究的量子和有限型不变量的3-流形及其与经典的拓扑和几何不变量的关系.研究者将继续研究他与J. Murakami和T.大月特别是,他计划进一步发展理论,包括其他3-流形,并研究与Le-Murakmi-Ohtsuki不变量相关的拓扑量子场论,这与通常的量子不变量不同。 他将尝试理解这些新的不变量的拓扑结构,并找到它们的应用。其中一个项目是研究双曲或更一般的单纯形的纽结的体积和它们的量子不变量之间的关系(以证明Kashaev-Murakami-Murakami猜想)。纽结和三维流形理论是数学的一个古老的分支,在发现琼斯多项式及其与理论物理(量子场论,高能物理)的关系之后,它重新引起了数学家和物理学家的兴趣。事实上,它现在是数学中最活跃的领域之一。纽结理论的许多结果也可能在分子生物学中得到应用。数学家用“不变量”来分类纽结和三维流形。本文研究了纽结和3-流形的新的不变量类及其与经典不变量类的关系。新的变式在区分纽结和三维流形方面是非常强大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thang Le其他文献

Out-of-plane soil-structure interaction: A tapered shear wall on flexible semi-circular foundation excited by plane SH waves
  • DOI:
    10.1016/j.soildyn.2021.106671
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thang Le;Vincent W. Lee;Mihailo D. Trifunac
  • 通讯作者:
    Mihailo D. Trifunac
Development of 3-DOF Force Feedback System Using Spherical Arm Mechanism and MR Brakes
使用球臂机构和磁流变制动器的三自由度力反馈系统的开发
  • DOI:
    10.18178/ijmerr.9.2.170-176
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hung Q. Nguyen;Thang Le;D. N. Nguyen;Tuan D. Le;T. V. Lang;Thang Ngo
  • 通讯作者:
    Thang Ngo
A unified quantum SO(3) invariant for rational homology 3-spheres
  • DOI:
    10.1007/s00222-010-0304-5
  • 发表时间:
    2010-12-22
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Anna Beliakova;Irmgard Bühler;Thang Le
  • 通讯作者:
    Thang Le
Search engine optimization poisoning: A cybersecurity threat analysis and mitigation strategies for small and medium-sized enterprises
搜索引擎优化中毒:中小企业网络安全威胁分析与缓解策略
  • DOI:
    10.1016/j.techsoc.2024.102470
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Tran Duc Le;Thang Le;Sylvestre Uwizeyemungu
  • 通讯作者:
    Sylvestre Uwizeyemungu
A Study of Musculoskeletal Disease in Two Chronic Hemodialysis Populations and Its Impact on Quality of Life
两种慢性血液透析人群的肌肉骨骼疾病及其对生活质量的影响的研究
  • DOI:
    10.1097/rhu.0b013e3181c4c57f
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheherbano Mehdi;P. Prete;Mehrtash Hashimzadeh;Antony Hou;Thang Le;Gaurang R Shah;Brian S Andrews
  • 通讯作者:
    Brian S Andrews

Thang Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thang Le', 18)}}的其他基金

The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
  • 批准号:
    2203255
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
From Subfactors to Quantum Topology
从子因子到量子拓扑
  • 批准号:
    2208246
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
  • 批准号:
    1912700
  • 财政年份:
    2019
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
  • 批准号:
    1811114
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Swiss Knots 2011: Knot Theory and Algebra
瑞士结 2011:结理论和代数
  • 批准号:
    1105703
  • 财政年份:
    2011
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
  • 批准号:
    0437552
  • 财政年份:
    2004
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
  • 批准号:
    0204158
  • 财政年份:
    2002
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
  • 批准号:
    9626404
  • 财政年份:
    1996
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
  • 批准号:
    2104022
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
  • 批准号:
    2104026
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Topology of 4-Manifolds, Embeddings, and Stable Homotopy Invariants of Links
4-流形拓扑、嵌入和链接的稳定同伦不变量
  • 批准号:
    2105467
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
  • 批准号:
    2213462
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Research on 3-manifolds and links based on the Heegaard theory
基于Heegaard理论的3流形与连杆研究
  • 批准号:
    21K20328
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Topology of 4-manifolds, links and Engel groups
4-流形、连杆和恩格尔群的拓扑
  • 批准号:
    1612159
  • 财政年份:
    2016
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
  • 批准号:
    1404754
  • 财政年份:
    2014
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
  • 批准号:
    25887039
  • 财政年份:
    2013
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
  • 批准号:
    1108727
  • 财政年份:
    2011
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Study of intersections and links on non-simply-connected equivariant manifolds and K-theory
非单连通等变流形的交和连线与K理论的研究
  • 批准号:
    22540085
  • 财政年份:
    2010
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了