Invariants of Links and 3-manifolds
链接和 3 流形的不变量
基本信息
- 批准号:0204158
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204158Thang LeThang Le plans to continue his study of quantum and finite typeinvariants of links and 3-manifolds. In particular, he would liketo study problems arising around the volume conjecture whichconnects quantum invariants to classical objects like fundamentalgroups, torsions, and volumes. Other problems involve integralityproperties (in broad sense) of quantum invariants and thetopology behind them, and their applications. The field hasinteractions with geometry, combinatorics, number theory, andphysics.The theory of knots and 3-manifolds is an old branch ofmathematics which has gained renewed interest amongmathematicians and physicists after the discovery of the Jonespolynomial and its relation to theoretical physics (quantum fieldtheory, high energy physics). In fact, it is now one of the mostactive domains in mathematics. Many results of knot theory mayalso find applications in molecular biology. To classify knotsand 3-manifolds, mathematicians use "invariants". This researchproject studies new classes of invariants of knots and3-manifolds and their relationships with the classical ones. Thenew invariants are very powerful in distinguishing knots and3-manifolds.
DMS-0204158 Thang Le Thang Le计划继续他的研究量子和有限型不变量的链接和3-流形。特别是,他想研究的问题所产生的体积猜想连接量子不变量的经典对象,如fundamentalgroups,torsions,和卷。其他问题涉及量子不变量的积分性质(广义)及其背后的拓扑结构,以及它们的应用。场与几何学、组合学、数论和物理学相互作用。纽结和三维流形理论是数学的一个古老的分支,在发现琼斯多项式及其与理论物理学(量子场论、高能物理学)的关系之后,又重新引起了数学家和物理学家的兴趣。事实上,它现在是数学中最活跃的领域之一。纽结理论的许多结果也可能在分子生物学中得到应用。数学家们用“不变量”来分类纽结和三维流形。本研究计画研究纽结与三维流形的新不变量类及其与经典不变量类的关系。新的不变量在区分纽结和三维流形方面是非常强大的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thang Le其他文献
Out-of-plane soil-structure interaction: A tapered shear wall on flexible semi-circular foundation excited by plane SH waves
- DOI:
10.1016/j.soildyn.2021.106671 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Thang Le;Vincent W. Lee;Mihailo D. Trifunac - 通讯作者:
Mihailo D. Trifunac
Development of 3-DOF Force Feedback System Using Spherical Arm Mechanism and MR Brakes
使用球臂机构和磁流变制动器的三自由度力反馈系统的开发
- DOI:
10.18178/ijmerr.9.2.170-176 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hung Q. Nguyen;Thang Le;D. N. Nguyen;Tuan D. Le;T. V. Lang;Thang Ngo - 通讯作者:
Thang Ngo
A unified quantum SO(3) invariant for rational homology 3-spheres
- DOI:
10.1007/s00222-010-0304-5 - 发表时间:
2010-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Anna Beliakova;Irmgard Bühler;Thang Le - 通讯作者:
Thang Le
Search engine optimization poisoning: A cybersecurity threat analysis and mitigation strategies for small and medium-sized enterprises
搜索引擎优化中毒:中小企业网络安全威胁分析与缓解策略
- DOI:
10.1016/j.techsoc.2024.102470 - 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Tran Duc Le;Thang Le;Sylvestre Uwizeyemungu - 通讯作者:
Sylvestre Uwizeyemungu
A Study of Musculoskeletal Disease in Two Chronic Hemodialysis Populations and Its Impact on Quality of Life
两种慢性血液透析人群的肌肉骨骼疾病及其对生活质量的影响的研究
- DOI:
10.1097/rhu.0b013e3181c4c57f - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Sheherbano Mehdi;P. Prete;Mehrtash Hashimzadeh;Antony Hou;Thang Le;Gaurang R Shah;Brian S Andrews - 通讯作者:
Brian S Andrews
Thang Le的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thang Le', 18)}}的其他基金
The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
- 批准号:
2203255 - 财政年份:2022
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1912700 - 财政年份:2019
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
- 批准号:
1811114 - 财政年份:2018
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Swiss Knots 2011: Knot Theory and Algebra
瑞士结 2011:结理论和代数
- 批准号:
1105703 - 财政年份:2011
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
- 批准号:
0437552 - 财政年份:2004
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Invariants of Links and 3-Manifolds, Their Properties and Topology
链接和 3-流形的不变量、它们的性质和拓扑
- 批准号:
9971350 - 财政年份:1999
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
- 批准号:
9626404 - 财政年份:1996
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2104022 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2104026 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Topology of 4-Manifolds, Embeddings, and Stable Homotopy Invariants of Links
4-流形拓扑、嵌入和链接的稳定同伦不变量
- 批准号:
2105467 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2213462 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Research on 3-manifolds and links based on the Heegaard theory
基于Heegaard理论的3流形与连杆研究
- 批准号:
21K20328 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Topology of 4-manifolds, links and Engel groups
4-流形、连杆和恩格尔群的拓扑
- 批准号:
1612159 - 财政年份:2016
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
- 批准号:
1404754 - 财政年份:2014
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
- 批准号:
25887039 - 财政年份:2013
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
- 批准号:
1108727 - 财政年份:2011
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Study of intersections and links on non-simply-connected equivariant manifolds and K-theory
非单连通等变流形的交和连线与K理论的研究
- 批准号:
22540085 - 财政年份:2010
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)