Moduli Spaces of Pseudoholomorphic Maps

伪全纯映射的模空间

基本信息

  • 批准号:
    2203302
  • 负责人:
  • 金额:
    $ 41.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Mathematical objects known as symplectic manifolds are of fundamental importance in the study of modern geometry and physics. This award supports research that lies at the intersection of symplectic geometry, which provides the framework for classical mechanics, and string theory, which developed as a potential candidate for unifying general relativity and particle physics, enabling the study of models of space-time and phase-spaces inaccessible by other means. The problems considered in this project are of foundational nature, and answers to these are expected to lead to new techniques and interactions among different fields of mathematics and have potential applications in string theory. There are several interesting applications of this work, and promising directions for continuing this line of research, some of them involving graduate students. The research and outreach activities of the principal investigator will have an impact on the education of next generation of mathematicians, engaging them in cutting-edge research early in their graduate career.The theme of this research involves symplectic manifolds and the structure of the invariants associated to them. Specifically, one of the projects aims to understand the geometric reasons behind a general Gopakumar-Vafa type structure theorem for many flavors of Gromov-Witten invariants. These types of structures were conjectured using string theory and have spurred a lot of interest in mathematics and many attempts to understand the geometry behind them. Another project aims to understand the properties of the Gromov-Witten virtual fundamental cycle in symplectic geometry and explore its functorial aspects. It includes a proposed set of axioms that would uniquely determine it, inspired by the Eilenberg-Steenrod axioms for homology theories. There are many different constructions of the Gromov-Witten virtual fundamental class of closed symplectic manifolds, each one with its own strengths and advantages, so knowing that most of these constructions carry the same information is useful, allowing one to choose whatever construction may be best suited for the particular problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
被称为辛流形的数学对象在现代几何学和物理学的研究中具有根本的重要性。该奖项支持位于辛几何交叉点的研究,辛几何为经典力学提供了框架,而弦理论则是统一广义相对论和粒子物理学的潜在候选者,使时空和相空间模型的研究能够通过其他方式实现。在这个项目中考虑的问题是基础性的,这些问题的答案预计将导致新的技术和不同数学领域之间的相互作用,并在弦理论中有潜在的应用。这项工作有几个有趣的应用,以及继续这条研究路线的有希望的方向,其中一些涉及研究生。首席研究员的研究和推广活动将对下一代数学家的教育产生影响,使他们在研究生生涯的早期就参与前沿研究。这项研究的主题涉及辛流形和与之相关的不变量的结构。具体来说,其中一个项目旨在了解许多Gromov-Witten不变量的一般Gopakumar-Vafa类型结构定理背后的几何原因。这些类型的结构是用弦理论来描述的,并激发了人们对数学的兴趣,并试图理解它们背后的几何结构。另一个项目旨在了解辛几何中Gromov-Witten虚基本循环的性质,并探索其函子方面。它包括一套建议的公理,将唯一地确定它,灵感来自艾伦伯格-斯廷罗德公理的同源性理论。闭辛流形的Gromov-Witten虚基本类有许多不同的构造,每一个都有自己的优势和优点,所以知道这些构造中的大多数都携带相同的信息是有用的,该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Splitting formulas for the local real Gromov–Witten invariants
局部实数 Gromov-Witten 不变量的分割公式
  • DOI:
    10.4310/jsg.2022.v20.n3.a2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Georgieva, Penka;Ionel, Eleny-Nicoleta
  • 通讯作者:
    Ionel, Eleny-Nicoleta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eleny-Nicoleta Ionel其他文献

Gromov invariants and symplectic maps
  • DOI:
    10.1007/s002080050289
  • 发表时间:
    1999-05-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Eleny-Nicoleta Ionel;Thomas H. Parker
  • 通讯作者:
    Thomas H. Parker

Eleny-Nicoleta Ionel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eleny-Nicoleta Ionel', 18)}}的其他基金

Student workshop in symplectic and contact geometry
辛几何和接触几何学生研讨会
  • 批准号:
    2002676
  • 财政年份:
    2020
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Continuing Grant
The Structure of the Gromov-Witten Invariants
Gromov-Witten 不变量的结构
  • 批准号:
    1905361
  • 财政年份:
    2019
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Continuing Grant
Conference Proposal: Kylerec Student Workshop in Symplectic and Contact Geometry
会议提案:Kylerec 辛几何和接触几何学生研讨会
  • 批准号:
    1818138
  • 财政年份:
    2018
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Graduate student workshop in symplectic and contact geometry
辛几何和接触几何研究生研讨会
  • 批准号:
    1722470
  • 财政年份:
    2017
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Moduli Spaces Relative Singular Divisors and Lagrangians
模空间相对奇异因数和拉格朗日
  • 批准号:
    0905738
  • 财政年份:
    2009
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
  • 批准号:
    0707164
  • 财政年份:
    2006
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Continuing Grant
Gromov Witten Invariants of Singular Spaces
奇异空间的 Gromov Witten 不变量
  • 批准号:
    0605003
  • 财政年份:
    2006
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Properties of Gromov-Witten Invariants
Gromov-Witten 不变量的性质
  • 批准号:
    0306299
  • 财政年份:
    2003
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Continuing Grant
Recursive formulas for Gromov-Witten invariants
Gromov-Witten 不变量的递归公式
  • 批准号:
    0071393
  • 财政年份:
    2000
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Gromov Invariants and Enumerative Invariants
格罗莫夫不变量和枚举不变量
  • 批准号:
    9996323
  • 财政年份:
    1999
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant

相似海外基金

Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Salary Programs
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10106857
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    EU-Funded
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
  • 批准号:
    EP/Y027639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Fellowship
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
  • 批准号:
    2341731
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Standard Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Research Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
  • 批准号:
    10091666
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    EU-Funded
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Discovery Projects
Spread through air spaces (STAS) の分子学的特性と発現機序の解明
阐明空气传播(STAS)的分子特征和表达机制
  • 批准号:
    24K19434
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
  • 批准号:
    AH/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.49万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了