Molecular Circuits for Optoelectronics utilizing Carbon Nanotubes

利用碳纳米管的光电分子电路

基本信息

项目摘要

The photo-conductance across a single molecule shall be measured in a three-terminal device as a function of the wavelength, the source/drain voltage, a gate voltage on the third terminal and the temperature in the range of 4.2 K and room temperature. The molecules will be contacted by two single wall carbon nanotubes (SWNTs), which act as mesoscopic source/drain contacts to the molecule, via a self-assembly process. The organic circuit ¿SWNT-molecule-SWNT¿ has a length of several hundreds of nanometers, which allows contacting the device by standard e-beam lithography and in turn, patterning of local side-gates. By applying voltages to the side-gates, the energy levels of the electrons in the molecule can be altered electrostatically. For the photo-excitation of the molecule we utilize a pulsed, wavelengthtunable laser system, which allows measuring the photo-conductance close to the absorption bands of the molecule. Using a pulsed laser system instead of a continuous wave laser minimizes the influence of heating effects in the contacts on the transport properties of the molecule. In addition, atomic rearrangements in the SWNT-molecule contact region are expected to play only a minor role as compared to gold contacts. In order to give direct experimental evidence that only one molecule is being characterized, we plan transport measurements on photo-switchable molecules, such as azobenzene or stilbene, and also on metalloproteins. Photo-switches exhibit a conformational change induced by photo-excitation, which allows studying the effect of molecular conformation on the transport properties. At the same time, a successful and reversible switching of the molecular conformation demonstrates that just one molecule is being connected and characterized optoelectronically. Proteins, on the other hand, allow verification of their presence by scanning probe microscopy.
应在三端器件中测量单个分子的光电导,作为波长、源极/漏极电压、第三端的栅极电压以及4.2 K至室温范围内的温度的函数。通过自组装过程,分子将与两个单壁碳纳米管(SWNT)接触,SWNT充当分子的介观源极/漏极接触。有机电路SWNT分子-SWNT?具有几百纳米的长度,这允许通过标准电子束光刻接触器件,并进而图案化局部侧栅极。通过向侧栅极施加电压,分子中电子的能级可以静电地改变。对于分子的光激发,我们利用脉冲,wavelengthtunable激光系统,它允许测量接近分子的吸收带的光电导。使用脉冲激光系统而不是连续波激光器最大限度地减少了接触中的加热效应对分子传输特性的影响。此外,在单壁碳纳米管-分子接触区域的原子重排预计只发挥较小的作用相比,金接触。为了提供直接的实验证据,只有一个分子的特点,我们计划运输测量光开关分子,如偶氮苯或芪,也对金属蛋白质。光开关在光激发下会发生构象变化,这使得研究分子构象对光开关输运性质的影响成为可能。同时,分子构象的成功和可逆转换表明,只有一个分子被连接和光电特征。另一方面,蛋白质可以通过扫描探针显微镜验证其存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Walter Holleitner其他文献

Professor Dr. Alexander Walter Holleitner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Walter Holleitner', 18)}}的其他基金

Low-dimensional optoelectronic dynamics in 3D topological insulators
3D 拓扑绝缘体中的低维光电动力学
  • 批准号:
    237548240
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optically induced non-equilibrium spin transport in mesoscopic semiconductor circuits
介观半导体电路中的光致非平衡自旋输运
  • 批准号:
    40915753
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Interaction driven many-body phases of optically generated exciton ensembles in van der Waals heterostructures
范德华异质结构中光生激子系综的相互作用驱动的多体相
  • 批准号:
    290642686
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
pnp-switchable Materials as Diodes and Transistors (pnp-mat)
pnp 可开关材料,如二极管和晶体管 (pnp-mat)
  • 批准号:
    522732992
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa
通过量子流体浴消除量子电路中的噪声 - SQuBa
  • 批准号:
    EP/Y022289/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
  • 批准号:
    MR/X022080/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
  • 批准号:
    MR/Y014537/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
  • 批准号:
    2338730
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding and engineering DNA supercoiling-mediated feedback in gene circuits
职业:理解和改造基因回路中 DNA 超螺旋介导的反馈
  • 批准号:
    2339986
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了