Heat transport in topological matter
拓扑物质中的热传输
基本信息
- 批准号:2204635
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports research, education, and outreach activities with a goal to achieve a fundamental understanding of topological matter by investigating how heat is transported within such matter. Topological matter is a new class of materials, which exhibit uniquely robust physical properties that are exceptionally stable to environmental effects. This property opens the door for many potential applications in measurement science, and more importantly, quantum information. These applications are related to the existence of elusive particles called anyons. We normally think of electrons as having no parts. Yet, in topological matter they often behave as if they were made of composite particles called anyons. These anyons are promising for building the fundamental components of a quantum computer, in which topological protection would help reduce otherwise unavoidable computational errors introduced by the material's interaction with its environment. The nature and even the existence of anyons in many systems remain hotly debated. The primary focus of this award is to develop ways to probe the existence and nature of anyons. So far, various electronic experiments have been proposed and implemented for this purpose. Yet, electronic tools have significant limitations and do not work in systems that do not conduct electricity. However, this is not a limitation for heat transport. The key idea of this project consists of focusing on heat transport (rather than electronic transport) to understand anyons, and hence, topological matter. This award also supports the PI's educational and outreach activities which contribute to the development of the US workforce in science, technology, engineering, and mathematics through research training of undergraduate and graduate students, writing pedagogical review articles, organization of conferences and workshops, and outreach to K-12 students and the general public.TECHNICAL SUMMARYThis award supports research, education, and outreach activities aimed at achieving a fundamental understanding of heat transport in topological matter. The last several years have witnessed several breakthroughs in the experimental detection of quantized thermal conductance, including the observation of its fractional quantization, which gives evidence of non-Abelian anyons. Yet, many aspects of topological heat transport remain poorly understood. The project has two research thrusts. The first one focuses on the problems of heat dissipation and the interplay of the charge and heat transport, which are crucial for the interpretation of the experimental data. The second thrust builds on the idea of thermal interferometry of anyons. Interferometry is the most direct way to probe fractional statistics. During the last two years, there has been dramatic progress in the experimental implementation of interferometry of charged anyons. Building on these recent developments, this project will extend the idea of anyonic interferometry to neutral anyons and to systems that do not support electric currents. The project will address several related problems in interferometry of charged and neutral anyons and in topological heat transport at ultra-low temperatures. The technical approaches will combine conformal field theory, Keldysh technique, algebraic theory of anyons, refermionization, Bethe ansatz, and other tools. The research will benefit from interaction with experimentalists from the Weizmann Institute of Science. This award also supports the PI's educational and outreach activities which contribute to the development of the STEM workforce in the US through research training of undergraduate and graduate students, writing pedagogical review articles, organization of conferences and workshops, and outreach to K-12 students and the general public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持研究、教育和推广活动,目的是通过研究热在拓扑物质中的传输方式来实现对这类物质的基本理解。拓扑物质是一类新的材料,它表现出独特的坚固的物理性质,对环境影响非常稳定。这一性质为测量科学中的许多潜在应用打开了大门,更重要的是,量子信息。这些应用与称为任意子的难以捉摸的粒子的存在有关。我们通常认为电子没有组成部分。然而,在拓扑物质中,它们通常表现得就像是由称为任意子的复合粒子组成的一样。这些任意子在构建量子计算机的基本组件方面很有希望,在量子计算机中,拓扑保护将有助于减少材料与环境相互作用带来的不可避免的计算误差。许多系统中的任意子的性质,甚至是否存在,仍然存在激烈的争论。该奖项的主要重点是探索探索任意子的存在和性质的方法。到目前为止,已经为此目的提出并实施了各种电子实验。然而,电子工具有很大的局限性,在不导电的系统中不起作用。然而,这并不是热量传输的限制。这个项目的关键思想是专注于热传输(而不是电子传输),以了解任意子,因此也就是拓扑物质。该奖项还支持PI的教育和推广活动,这些活动通过本科生和研究生的研究培训、撰写教学评论文章、组织会议和研讨会以及向K-12学生和普通公众推广,为美国科学、技术、工程和数学劳动力的发展做出贡献。在过去的几年里,在量子化热导的实验探测方面取得了几项突破,包括观察到了它的分数量子化,这给出了非阿贝尔任意子的证据。然而,拓扑热传输的许多方面仍然知之甚少。该项目有两个研究推动力。第一部分集中讨论了热耗散问题以及电荷和热输运的相互作用,这些问题对于解释实验数据是至关重要的。第二个推力建立在任意子热干涉测量的想法上。干涉测量是探测分数统计的最直接的方法。在过去的两年里,带电任意子干涉测量的实验实施取得了戏剧性的进展。在这些最新发展的基础上,该项目将把任意子干涉测量的想法扩展到中性任意子和不支持电流的系统。该项目将解决带电任意子和中性任意子的干涉测量以及超低温下的拓扑热传输中的几个相关问题。这些技术方法将结合保形场理论、凯尔德什技术、任意子的代数理论、指标化、Bethe ansatz和其他工具。这项研究将受益于与魏茨曼科学研究所的实验者的互动。该奖项还支持PI的教育和外展活动,这些活动通过本科生和研究生的研究培训、撰写教学评论文章、组织会议和研讨会以及面向K-12学生和普通公众的外展活动,为美国STEM劳动力的发展做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Feldman其他文献
Bardeen-Cooper-Schrieffer theory
巴丁-库珀-施里弗理论
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Leon N. Cooper;Dmitri Feldman - 通讯作者:
Dmitri Feldman
Dmitri Feldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Feldman', 18)}}的其他基金
Disorder and interaction in topological matter
拓扑物质中的无序和相互作用
- 批准号:
1607451 - 财政年份:2017
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Statistics and dynamics in topological states of matter
物质拓扑态的统计和动力学
- 批准号:
1205715 - 财政年份:2012
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Non-Equilibrium Transport and Disorder Effects in Quantum Wires and Related Systems
职业:量子线及相关系统中的非平衡输运和无序效应
- 批准号:
0544116 - 财政年份:2006
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
BNIP-2调控E-cadherin细胞内分选运输的机制研究
- 批准号:32100540
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
磷脂分子参与植物细胞器互作及自噬的调控机制
- 批准号:91954206
- 批准年份:2019
- 资助金额:301.0 万元
- 项目类别:重大研究计划
IRE1α-XBP1在脂肪细胞和肝细胞间跨细胞信号传导机制研究
- 批准号:31900564
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
活细胞高分辨率成像解析clathrin介导的内吞囊泡形成早期内体的分子机制
- 批准号:31970659
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
- 批准号:31872832
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
- 批准号:91854121
- 批准年份:2018
- 资助金额:89.0 万元
- 项目类别:重大研究计划
细胞分泌的调控及相关肠炎的机理研究
- 批准号:31871429
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
生长素调控植物细胞网格蛋白质膜招募的分子机理研究
- 批准号:31801193
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
- 批准号:
22KF0111 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
- 批准号:
2238927 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Interfacial quantum transport phenomena in heterostructures of topological insulators
拓扑绝缘体异质结构中的界面量子输运现象
- 批准号:
22KJ0902 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
- 批准号:
2143177 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Topological quantum transport properties in spin-valley locked Dirac semimetals
自旋谷锁定狄拉克半金属的拓扑量子输运特性
- 批准号:
2211327 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
New Phases and Non-Equilibrium Transport in Topological Mesoscopic Superfluids
拓扑介观超流体中的新相和非平衡输运
- 批准号:
2023928 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Quantum transport phenomena induced by topological spin textures
拓扑自旋纹理引起的量子输运现象
- 批准号:
21K13875 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Emergent and topological properties of 3D chiral gyroid nanostructures
3D 手性螺旋纳米结构的涌现和拓扑特性
- 批准号:
21K04816 - 财政年份:2021
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)