Graphics Hardware Accelerated Real-Time Machinability Analysis of Free-Form Surfaces
图形硬件加速自由曲面的实时可加工性分析
基本信息
- 批准号:0729280
- 负责人:
- 金额:$ 22.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to investigate new geometric manufacturability/machinability analysis techniques that will leverage the massive computational capabilities of commodity computer graphics hardware to generate real-time feedback to designers. We intend to provide designers with tools to evaluate geometric machinability during the detailed design phase. Instead of operating on the continuous-space solid modeling representations of geometry, our techniques will function in the discretized domain thus simplifying calculations and reducing numerical errors. These methods will exploit the capabilities of graphical processing units (GPUs) to handle the large data-sets which occur when using discrete domain methods. The result will be a collection of various machinability queries implemented as specialized filters that will act on tessellated models of the parts (commonly used for three dimensional display). Manufacturability evaluation will consist of viewing the free-form surfaces with the appropriate filters within the modified graphics pipeline.If successful, this research will result in manufacturability evaluation pipelines analogous to the standard graphics pipeline which will be integrated into contemporary CAD systems for real-time geometric machinability evaluations. Designers will be able to switch between the standard graphics display and the machinability evaluation display to visually identify problem areas in the design during detailed design. As part of the educational plan and outreach, we will develop visualization tools that will be used in courses to improve students' understanding of geometric machinability. These plug-ins will be used in an undergraduate course in computer aided design and in K-12 outreach programs. Promising undergraduate students from computer science (as programmers) and mechanical engineering (test part developers) will be recruited through the Research Scholars Program (RSP) using REU funding. Broader societal impact is addressed through the effect this research will have on maintaining the competitiveness of US product designers in the global market.
该奖项的研究目标是研究新的几何可制造性/可加工性分析技术,这些技术将利用商品计算机图形硬件的大规模计算能力,为设计师生成实时反馈。我们打算在详细设计阶段为设计人员提供评估几何可加工性的工具。我们的技术将在离散域中起作用,而不是在几何形状的连续空间实体建模表示上操作,从而简化计算并减少数值误差。这些方法将利用图形处理单元(GPU)的能力来处理使用离散域方法时出现的大型数据集。其结果将是各种机加工性查询的集合,这些查询被实现为专用过滤器,这些过滤器将作用于零件的镶嵌模型(通常用于三维显示)。可制造性评估将包括在修改后的图形流水线中使用适当的过滤器查看自由曲面,如果成功,这项研究将导致类似于标准图形流水线的可制造性评估流水线,该流水线将被集成到当代CAD系统中,用于实时几何可加工性评估。设计人员将能够在标准图形显示和可加工性评估显示之间切换,以便在详细设计期间直观地识别设计中的问题区域。作为教育计划和推广的一部分,我们将开发可视化工具,用于课程中,以提高学生对几何可加工性的理解。这些插件将用于计算机辅助设计的本科课程和K-12外展计划。来自计算机科学(程序员)和机械工程(测试部件开发人员)的有前途的本科生将通过研究学者计划(RSP)使用REU资金招募。更广泛的社会影响是通过这项研究将对保持美国产品设计师在全球市场上的竞争力的影响来解决的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roshan D'souza其他文献
SEGMENTAL STRAIN AND POST-SYSTOLIC SHORTENING IN RIGHT VENTRICLES OF CHILDREN WITH HYPOPLASTIC LEFT HEART SYNDROME DURING THREE STAGES OF REPAIR
- DOI:
10.1016/s0735-1097(14)61183-9 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Roshan D'souza;Anirban Banerjee;Saurabh Patel - 通讯作者:
Saurabh Patel
Roshan D'souza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roshan D'souza', 18)}}的其他基金
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
- 批准号:
2205265 - 财政年份:2022
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2103560 - 财政年份:2021
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0855107 - 财政年份:2009
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
Graphics Hardware Accelerated Real-Time Machinability Analysis of Free-Form Surfaces
图形硬件加速自由曲面的实时可加工性分析
- 批准号:
0968518 - 财政年份:2009
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
CAREER: Towards Interactive Simulation of Giga-Scale Agent-Based Models on Graphics Processing Units
职业:在图形处理单元上进行基于千兆级代理的模型的交互式仿真
- 批准号:
1013278 - 财政年份:2009
- 资助金额:
$ 22.94万 - 项目类别:
Continuing Grant
CAREER: Towards Interactive Simulation of Giga-Scale Agent-Based Models on Graphics Processing Units
职业:在图形处理单元上进行基于千兆级代理的模型的交互式仿真
- 批准号:
0845284 - 财政年份:2009
- 资助金额:
$ 22.94万 - 项目类别:
Continuing Grant
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0968519 - 财政年份:2009
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
SGER: Exploring Data-Parallel Techniques for Mega-Scale Agent Based Model Simulations on Graphics Processing Units
SGER:探索图形处理单元上基于大规模代理的模型仿真的数据并行技术
- 批准号:
0840666 - 财政年份:2008
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
SGER: Preliminary Investigation of Selective Volumetric Sintering of Powder Metallurgy Parts Using Microwaves
SGER:使用微波选择性体积烧结粉末冶金零件的初步研究
- 批准号:
0542463 - 财政年份:2005
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
相似海外基金
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
- 批准号:
DE230100754 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Continuing Grant
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2022
- 资助金额:
$ 22.94万 - 项目类别:
Discovery Grants Program - Individual
Hardware-Accelerated Implementation of a Neural Pathway Classifier on Ultra-low-power FPGA
在超低功耗 FPGA 上硬件加速实现神经通路分类器
- 批准号:
572677-2022 - 财政年份:2022
- 资助金额:
$ 22.94万 - 项目类别:
University Undergraduate Student Research Awards
Network-on-Chip Architectures in Hardware-Accelerated Application-Specific Integrated Circuits
硬件加速专用集成电路中的片上网络架构
- 批准号:
566266-2021 - 财政年份:2021
- 资助金额:
$ 22.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
- 批准号:
2051062 - 财政年份:2021
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
CAREER: Effectuating Hardware-Accelerated Systems with Domain-Specific Primitives
职业:使用特定于领域的原语实现硬件加速系统
- 批准号:
2045974 - 财政年份:2021
- 资助金额:
$ 22.94万 - 项目类别:
Continuing Grant
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2021
- 资助金额:
$ 22.94万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Hardware-Accelerated Private Computation
高性能硬件加速私有计算
- 批准号:
RGPIN-2020-05807 - 财政年份:2020
- 资助金额:
$ 22.94万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028876 - 财政年份:2020
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant