Mechanisms and Kinetics of Saltwater-Driven Carbon Dioxide Capture for Environmental and Ocean Health

盐水驱动的二氧化碳捕集对环境和海洋健康的机制和动力学

基本信息

  • 批准号:
    2207642
  • 负责人:
  • 金额:
    $ 42.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Human-caused excessive carbon dioxide emissions in the ocean and the atmosphere are a significant threat to all life on Earth. This extra carbon dioxide in the ocean leads to an undesirable process called ocean acidification. In addition, the increased carbon dioxide in the atmosphere causes the global temperature to rise, significantly altering the Earth's climate. To mitigate these emissions, many power plants capture carbon dioxide from flue gas through a post-combustion process that separates the carbon dioxide using freshwater and nitrogen-containing chemicals, a promising technology that, unfortunately, relies heavily on freshwater and produces environmentally harmful byproducts. To reduce costs and energy consumption, chemical-free carbon dioxide dissolution in saltwater would be a good alternative to conventional freshwater capture techniques. The overarching objective of this proposal is to evaluate the performance and environmental impact of seawater to capture carbon dioxide using environmentally friendly metal nanoparticle catalysts. Successful completion of the project will provide a strategy to transform the long-term health of atmospheric and ocean environments by removing harmful carbon dioxide using ample natural resources. Beyond the direct impact on the environment, the project will advance decontamination technologies for the agricultural, environmental, and energy industries.A healthy ocean is essential for the global climate, absorbing roughly 40% of carbon dioxide emissions. The development of a novel catalytic carbon dioxide separation approach is critical for addressing rapid global warming and ocean acidification. The goal of this research is to understand the fundamental mechanisms of absorption-based gas separation in natural seawater using polymer-stabilized nickel nanoparticle catalysts. This goal will be accomplished by a comprehensive ex-situ and in-situ examination of the nanoparticle size, morphology, and surface chemistry during reactions in seawater using nanoscale microscopy and spectroscopy. The research will investigate the time-dependent surface chemistry at the interface between the nickel nanoparticle surface and the surrounding solution, enabling a better understanding of the progressive reaction states of the nanoparticles. Fundamental insights into the reaction mechanism of nanoparticle-involved carbon dioxide dissolution in saltwater will explain the unprecedented dissolution efficiency under conventionally unfavorable conditions. To further understand nanoparticle-driven carbon dioxide dissolution in saltwater, the dissolution kinetics will be investigated as a function of carrier fluids, reaction conditions, and catalyst properties. The final tasks will be to evaluate the dominant elements that promote precipitation of carbonate minerals, identify the leading type of minerals, characterize the resultant minerals, and study the feasibility of carbonate-based mitigation for ocean acidification. This research will provide a fundamental understanding of catalytic carbon dioxide separation under variable fluid, reaction, and catalyst property conditions, advancing science towards effective gas separation in the energy and chemical industry. In addition, an understanding of carbonate formation in the heterogeneous saltwater environment will enable the identification of dominant byproducts valuable to marine organisms as well as the impacts of carbonate minerals on marine calcification. The learned knowledge will be transformative by promoting the use of saltwater in many environmental energy processes while saving the increasingly limited freshwater supply.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类在海洋和大气中排放过多的二氧化碳对地球上的所有生命都是一个重大威胁。海洋中多余的二氧化碳导致了一个不受欢迎的过程,即海洋酸化。此外,大气中二氧化碳的增加导致全球气温上升,极大地改变了地球的气候。为了减少这些排放,许多发电厂通过燃烧后过程从烟气中捕获二氧化碳,该过程使用淡水和含氮化学品分离二氧化碳,这是一项很有前途的技术,不幸的是,它严重依赖淡水并产生对环境有害的副产品。为了降低成本和能源消耗,在盐水中溶解无化学物质的二氧化碳将是传统淡水捕获技术的一个很好的替代方案。该提案的总体目标是评估使用环境友好型金属纳米颗粒催化剂捕获海水二氧化碳的性能和环境影响。该项目的成功完成将提供一种战略,通过利用充足的自然资源清除有害的二氧化碳,改变大气和海洋环境的长期健康状况。除了对环境的直接影响外,该项目还将推动农业、环境和能源行业的净化技术。健康的海洋对全球气候至关重要,它吸收了大约40%的二氧化碳排放。开发一种新型催化二氧化碳分离方法对于解决快速的全球变暖和海洋酸化问题至关重要。本研究的目的是了解利用聚合物稳定的纳米镍颗粒催化剂在天然海水中吸附气体分离的基本机制。这一目标将通过使用纳米显微镜和光谱学对海水反应过程中纳米颗粒的大小、形态和表面化学进行全面的原位和原位检查来实现。该研究将研究镍纳米颗粒表面和周围溶液之间界面的时间依赖性表面化学,从而更好地理解纳米颗粒的渐进反应状态。对纳米颗粒参与的二氧化碳溶解在盐水中的反应机理的基本认识将解释在常规不利条件下前所未有的溶解效率。为了进一步了解纳米颗粒驱动的二氧化碳在盐水中的溶解,溶解动力学将作为载体流体、反应条件和催化剂性质的函数进行研究。最后的任务将是评价促进碳酸盐矿物沉淀的主要因素,确定主要矿物类型,确定所产生矿物的特征,并研究以碳酸盐为基础减缓海洋酸化的可行性。这项研究将为在可变流体、反应和催化剂性能条件下的催化二氧化碳分离提供基本的理解,推动能源和化学工业中有效气体分离的科学发展。此外,了解非均质海水环境中的碳酸盐形成将有助于识别对海洋生物有价值的主要副产物,以及碳酸盐矿物对海洋钙化的影响。通过在许多环境能源过程中促进使用盐水,同时节省日益有限的淡水供应,所学到的知识将具有变革性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards green carbon capture and storage using waste concrete based seawater: A microfluidic analysis
利用废混凝土海水实现绿色碳捕获和储存:微流体分析
  • DOI:
    10.1016/j.jenvman.2023.118760
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Ratanpara, Abhishek;Ricca, John G.;Gowda, Ayush;Abraham, Abel;Wiskoff, Sofia;Zauder, Victor;Sharma, Ria;Hafez, Mazen;Kim, Myeongsub
  • 通讯作者:
    Kim, Myeongsub
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Myeongsub Kim其他文献

Microbubbles Loaded with Nickel Nanoparticles: A Perspective for Carbon Sequestration.
载有镍纳米粒子的微泡:碳封存的视角。
  • DOI:
    10.1021/acs.analchem.7b02205
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Seokju Seo;Minh;M. Mastiani;G. Navarrete;Myeongsub Kim
  • 通讯作者:
    Myeongsub Kim
The spatial resolution of dual-tracer fluorescence thermometry in volumetrically illuminated channels
体积照明通道中双示踪剂荧光测温的空间分辨率
  • DOI:
    10.1007/s00348-013-1649-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Myeongsub Kim;M. Yoda
  • 通讯作者:
    M. Yoda
Microscale optical thermometry techniques for measuring liqud-phase and wall surface temperatures
  • DOI:
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Myeongsub Kim
  • 通讯作者:
    Myeongsub Kim
Recent Observations of Micro-earthquakes and Its Implications for Seismic Risk in the Seoul Metropolitan Region, Korea
最近对韩国首尔都市区微地震的观测及其对地震风险的影响
  • DOI:
    10.7854/jpsk.2016.25.3.253
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kwang‐hee Kim;Min Han;Myeongsub Kim;J. Kyung
  • 通讯作者:
    J. Kyung
Optimized NiFeP alloy for overall water-splitting
用于全水解的优化镍铁磷合金
  • DOI:
    10.1016/j.renene.2025.123257
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.100
  • 作者:
    Sonia Carbone;Roberto Luigi Oliveri;Bernardo Patella;Giuseppe Aiello;Michelangelo Scopelliti;Nicola Campagna;Filippo Pellitteri;Rosario Miceli;Alberto Affranchi;Sonia Longo;Maurizio Cellura;Philippe Mandin;Myeongsub Kim;Rosalinda Inguanta
  • 通讯作者:
    Rosalinda Inguanta

Myeongsub Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Myeongsub Kim', 18)}}的其他基金

Investigation of Nucleate Boiling Mechanisms using 3D Transient Temperature Mapping
使用 3D 瞬态温度图研究泡核沸腾机制
  • 批准号:
    1917272
  • 财政年份:
    2019
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
  • 批准号:
    DP240102418
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Discovery Projects
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
  • 批准号:
    2336506
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
  • 批准号:
    2337461
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Impact of Dephosphorylation Kinetics and Adapter Specificity on Synthetic T Cell Receptor Signaling and Function
职业:了解去磷酸化动力学和接头特异性对合成 T 细胞受体信号传导和功能的影响
  • 批准号:
    2339172
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
  • 批准号:
    2339693
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
Solvent Reorganization Effects on the Kinetics of Electrochemical Hydrogen Evolution
溶剂重组对电化学析氢动力学的影响
  • 批准号:
    2350501
  • 财政年份:
    2024
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
Resolving the Shortcomings in Modern NH3 Kinetics Models using Detailed Species Time Histories and Direct Rate Measurements
使用详细的物种时间历史和直接速率测量解决现代 NH3 动力学模型的缺点
  • 批准号:
    2308433
  • 财政年份:
    2023
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
  • 批准号:
    2316167
  • 财政年份:
    2023
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Fellowship Award
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304861
  • 财政年份:
    2023
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了