CAS-Climate: Understanding the Changing Climatology, Organizing Patterns and Source Attribution of Hazards of Floods over the Southcentral and Southeast US

CAS-气候:了解美国中南部和东南部洪水灾害的气候变化、组织模式和来源归因

基本信息

  • 批准号:
    2208562
  • 负责人:
  • 金额:
    $ 67.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Floods often lead to significant loss of life and property. This project will focus on understanding how watershed conditions and atmospheric and oceanic conditions cause monthly flooding over the Southcentral and Southeast US region (SESC) as the region is vulnerable to flooding throughout the year. Given the increasing strength and frequency of tropical storms (2020 set a record with 30 named storms in the Atlantic and 12 making landfall in the SESC), this project will enhance the scientific understanding of flood hazards and will also better inform the wider community of forecasters and decision makers. For instance, five recent major hurricanes – Matthew (2016), Harvey (2017), Irma (2017), Florence (2018), and Ida (2021) – led to catastrophic flooding over the SESC causing major challenges in preparedness and recovery for local, state and federal agencies. The project team will engage with climate offices, National Environmental Modeling and Analysis Center (NEMAC) at UNC, Asheville and National Centers for Environmental Information (NCEI). The project team will also collaborate with faculty and graduate students from minority-serving institutions as part of the summer internship program at NC State University. Results from the project will be disseminated through peer reviewed publications, seminars and workshops.The objective of this proposal is to improve understanding of monthly flood dynamics over the SESC US by (a) quantifying the shift in climatology, (b) identifying their moisture delivery pathways, and (c) attributing the sources (land surface, atmosphere and ocean) that modulate their spatiotemporal variability. The project team will examine the shift in climatology and interannual variability of monthly daily/3-day maximum streamflow in Hydroclimatic Data Network (HCDN) basins over the SESC. The principal investigators will also use a variety of observed and reanalysis data, climatic indices, as well as statistical and physical (numerical weather prediction) models. The shift in climatology will be quantified using optimal climate normal and “hinge fit” methodologies, and the organizational and moisture delivery patterns will be analyzed using multiple Lagrangian particle tracking models. Attribution of sources related to monthly flood climatology will be quantified using rigorous statistical techniques (e.g., random forest, hinge fit) and through physical modeling. A Bayesian Hierarchical Model (BHM) will combine the contribution from five identified sources – 1) shift in climatology and sources of moisture transport, 2) teleconnections, 3) atmospheric rivers (ARs), 4) tropical cyclones (TCs), and 5) initial land-surface conditions – that influence flood processes over multiple spatial scales for explaining the observed monthly flood variability in the SESC region.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
洪灾往往造成重大的生命和财产损失。该项目将侧重于了解分水岭条件以及大气和海洋条件如何导致美国中南部和东南部地区(SESC)的月度洪灾,因为该地区全年都容易发生洪灾。鉴于热带风暴的强度和频率不断增加(2020年创下记录,有30个命名风暴在大西洋,12个在SESC登陆),该项目将加强对洪水灾害的科学了解,也将更好地向更广泛的预报员和决策者提供信息。例如,最近的五次主要飓风--马修(2016)、哈维(2017)、伊尔玛(2017)、佛罗伦萨(2018)和伊达(2021)--导致SESC发生灾难性洪灾,给地方、州和联邦机构的备灾和恢复工作带来重大挑战。项目小组将与气候办公室、北卡罗来纳大学的国家环境建模和分析中心(NEMAC)、阿什维尔和国家环境信息中心(NCEI)进行接触。该项目团队还将与少数族裔服务机构的教职员工和研究生合作,作为北卡罗来纳州立大学暑期实习计划的一部分。该项目的结果将通过同行评议的出版物、研讨会和研讨会传播。这项建议的目的是通过(A)量化气候学的变化,(B)确定其水分输送途径,以及(C)确定影响其时空变异性的来源(陆地表面、大气和海洋),从而提高对SESC US每月洪水动态的理解。项目组将研究SESC上水文气候数据网络(HCDN)流域每月每日/3日最大径流的气候学变化和年际变化。首席调查员还将使用各种观测和再分析数据、气候指数以及统计和物理(数值天气预报)模型。气候学的转变将使用最佳气候正常和“铰链匹配”方法进行量化,组织和水分输送模式将使用多个拉格朗日粒子跟踪模型进行分析。将使用严格的统计技术(例如随机森林、铰链拟合)和物理模型来量化与每月洪水气候学有关的来源的归属。贝叶斯分级模式(BHM)将结合五个确定的来源的贡献-1)气候学和水汽输送来源的变化,2)遥相关,3)大气河流(AR),4)热带气旋(TCS),和5)初始地表条件-在多个空间尺度上影响洪水过程,以解释在SESC地区观察到的每月洪水变异性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sankarasubraman Arumugam其他文献

Sankarasubraman Arumugam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sankarasubraman Arumugam', 18)}}的其他基金

EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Collaborative Research:NSF-NSFC:Improving FEW system sustainability over the SEUS and NCP: A cross-regional synthesis considering uncertainties in climate and regional development
合作研究:NSF-NSFC:提高 SEUS 和 NCP 上的 FEW 系统可持续性:考虑气候和区域发展不确定性的跨区域综合
  • 批准号:
    1805293
  • 财政年份:
    2018
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Cybersees Type 2: Cyber-Enabled Water and Energy Systems Sustainability Utilizing Climate Information
Cyber​​sees 类型 2:利用气候信息实现网络支持的水和能源系统可持续性
  • 批准号:
    1442909
  • 财政年份:
    2014
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Conference: Seasonal to Interannual Hydroclimate Forecasts and Water Management, Portland, OR, July/August 2013
会议:季节到年际水文气候预测和水资源管理,俄勒冈州波特兰,2013 年 7 月/8 月
  • 批准号:
    1311751
  • 财政年份:
    2013
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
WSC- Category 3: Collaborative Research: Water Sustainability under Near-term Climate Change : A cross-regional analysis incorporating socio-ecological feedbacks and adaptations
WSC-类别 3:合作研究:近期气候变化下的水可持续性:纳入社会生态反馈和适应的跨区域分析
  • 批准号:
    1204368
  • 财政年份:
    2012
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Continuing Grant
CAREER: Climate Informed Uncertainty Analyses for Integrated Water Resources Sustainability
职业:综合水资源可持续性的气候知情不确定性分析
  • 批准号:
    0954405
  • 财政年份:
    2010
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Continuing Grant
Improved water resources sustainability utilizing multi-time scale streamflow forecasts
利用多时间尺度水流预测提高水资源可持续性
  • 批准号:
    0756269
  • 财政年份:
    2008
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Continuing Grant

相似海外基金

Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
  • 批准号:
    MR/X033139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Fellowship
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
CAREER: Transformative Understanding of Rainfall-Triggered Landslides with Vegetation Effects from a Climate Change Perspective: Initiation and Consequences
职业:从气候变化的角度对降雨引发的山体滑坡及其植被影响进行变革性的理解:起因和后果
  • 批准号:
    2340657
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Conference: 2024 Gordon Research Conference on Ocean Mixing: Understanding the Role of Ocean Mixing Across Scales on Climate, Ecosystems, and Ocean Solutions to Societal Problems
会议:2024 年戈登海洋混合研究会议:了解不同尺度的海洋混合对气候、生态系统和海洋社会问题解决方案的作用
  • 批准号:
    2344507
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Global Centers Track 1: Understanding Climate Change Impacts on Transboundary Waters
全球中心轨道 1:了解气候变化对跨界水域的影响
  • 批准号:
    2330317
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Standard Grant
Towards climate stabilisation: understanding changes in climate, climate variability, and impacts
实现气候稳定:了解气候变化、气候变异性和影响
  • 批准号:
    NE/X017850/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Fellowship
'Build it so they will come.' Understanding lived experience to catalyze active transportation as a climate change intervention
“建造它,这样他们就会来。”
  • 批准号:
    485336
  • 财政年份:
    2023
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Operating Grants
Understanding and improving AMOC forecasts in inter-annual to decadal climate predictions
了解并改进 AMOC 在年际至十年间气候预测中的预测
  • 批准号:
    2890063
  • 财政年份:
    2023
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Studentship
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
  • 批准号:
    2885122
  • 财政年份:
    2023
  • 资助金额:
    $ 67.34万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了