Research in Integrable Quantum Field Theory

可积量子场论研究

基本信息

  • 批准号:
    2210187
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This award funds the research activities of Professor Sergei Lukyanov at Rutgers, The State University of New Jersey.Since its inception in the 1920's, Quantum Field Theory (QFT) has become an indispensable tool in modern theoretical physics. Apart from particle physics --- the original motivation for developing this framework --- it has found remarkable success in describing the physics of phase transitions as well as numerous applications in many-body systems, turbulence, cosmology, etc. As the list of topics continues to expand, we are forced to constantly revise our fundamental understanding of QFT and incorporate new powerful mathematical techniques that can handle problems of increasing complexity. A perfect theoretical laboratory for doing this has turned out to involve low-dimensional "integrable" models and conformal field theories. These are theories that possess a large, oftentimes infinite, set of symmetries that together allow the use of powerful exact methods for their solution. In turn this elevated degree of control has led --- and is still leading --- to profound insights into many important physical concepts. As a result, the field of Integrable Quantum Field Theory (IQFT) sits at the cutting edge of theoretical high-energy physics. The research of Professor Lukyanov is aimed at the further development of IQFTs. A successful realization would allow one to overcome the notorious technical difficulties that emerge when traditional methods are applied to many of the theories that appear within the context of mainstream theoretical high-energy physics. This research is therefore in the national interest because it will have an important impact on the development and understanding of fundamental science within the United States. Professor Lukyanov also intends to involve graduate students and postdocs in his research and disseminate the results to the broader community of young scientists via lectures and workshops.More technically, this research is focused on integrable quantum spin chains and non-linear sigma models --- exactly the types of theories that emerge within the context of gauge/string duality. This research is organized into three projects. The first is the study of a certain multiparametric quantum spin chain at criticality. The key to the approach will be the so-called ODE/IQFT correspondence, a new mathematical tool of Integrable Quantum Field Theories ("IQFT" side) which allows one to "encode" its algebraic structures into a system of Ordinary Differential Equations ("ODE" side). This part is directly related to the gauge/string duality. The second project is devoted to the study of the high-energy asymptotics of scattering amplitudes in quantum chromodynamics. The ultimate objective of the third project is to extend the ODE/IQFT approach to integrable non-linear sigma models. The new methods considered in this project, when fully developed, should be of broad impact. The first and third projects could lead to entirely new directions and discoveries, including potential applications to the description of disordered systems in condensed-matter physics. By contrast, the second project has to do with a realistic problem in particle physics. All three projects provide excellent training opportunities for students in QFT and statistical mechanics, from undergraduate-level problems to advanced training in the most abstract analytic techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助了新泽西罗格斯州立大学的谢尔盖·卢基扬诺夫教授的研究活动。自20世纪20年代创立以来,量子场论(QFT)已成为现代理论物理学中不可或缺的工具。 除了粒子物理学-发展这个框架的最初动机-它在描述相变物理学以及在多体系统、湍流、宇宙学等方面的众多应用方面取得了显着的成功。我们不得不不断修正我们对QFT的基本理解,并采用新的强大的数学技术,增加复杂性。 一个完美的理论实验室,这样做已经变成涉及低维“可积”模型和共形场论。 这些理论拥有一个大的,往往是无限的,一套对称性,共同允许使用强大的精确方法来解决他们的问题。反过来,这种控制程度的提高已经导致-而且仍然导致-对许多重要物理概念的深刻见解。 因此,可积量子场论(IQFT)领域处于理论高能物理学的前沿。 Lukyanov教授的研究旨在进一步发展IQFT。 一个成功的实现将使人们能够克服当传统方法应用于主流理论高能物理背景下出现的许多理论时出现的臭名昭著的技术困难。因此,这项研究符合国家利益,因为它将对美国基础科学的发展和理解产生重要影响。 Lukyanov教授还打算让研究生和博士后参与他的研究,并通过讲座和研讨会将结果传播给更广泛的年轻科学家社区。更技术化地说,这项研究专注于可积量子自旋链和非线性sigma模型--正是规范/弦对偶背景下出现的理论类型。 这项研究分为三个项目。第一个是对临界态下多参数量子自旋链的研究。该方法的关键将是所谓的ODE/IQFT对应,这是可积量子场论(“IQFT”侧)的一种新的数学工具,允许将其代数结构“编码”成常微分方程系统(“ODE”侧)。 这部分直接与规范/弦对偶性有关。 第二个项目是致力于研究量子色动力学中散射振幅的高能渐近性。第三个项目的最终目标是将ODE/IQFT方法扩展到可积非线性sigma模型。本项目中考虑的新方法在充分发展后应具有广泛的影响。第一个和第三个项目可能会带来全新的方向和发现,包括在凝聚态物理学中描述无序系统的潜在应用。 相比之下,第二个项目与粒子物理学中的一个现实问题有关。这三个项目都为学生提供了极好的QFT和统计力学培训机会,从本科生水平的问题到最抽象的分析技术的高级培训。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the scaling behaviour of an integrable spin chain with Zr symmetry
Zr对称性可积自旋链的标度行为
  • DOI:
    10.1016/j.nuclphysb.2023.116269
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kotousov, Gleb A.;Lukyanov, Sergei L.
  • 通讯作者:
    Lukyanov, Sergei L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Lukyanov其他文献

S=1/2反強磁性ハイゼンベルグ鎖におけるダイマー相関振幅とボンド交替による励起ギャップ
S=1/2 反铁磁海森堡链中二聚体相关幅度和键交替激发间隙
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    引原俊哉;古崎昭;Sergei Lukyanov
  • 通讯作者:
    Sergei Lukyanov

Sergei Lukyanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Lukyanov', 18)}}的其他基金

Intergratable Quantum Field Theories:New Methods And Applications
可积量子场论:新方法与应用
  • 批准号:
    1404056
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
  • 批准号:
    2302661
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Classical and Quantum integrable hierarchies in Gromov-Witten type theories
Gromov-Witten 类型理论中的经典和量子可积层次结构
  • 批准号:
    23KF0114
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
  • 批准号:
    2713401
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Quantum Integrable Systems and Geometry
量子可积系统和几何
  • 批准号:
    2203823
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Quantum discrete integrable systems
量子离散可积系统
  • 批准号:
    2704447
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Development Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
  • 批准号:
    2744813
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
  • 批准号:
    22H01146
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-equilibrium dynamics of integrable quantum systems: An algebro-geometric approach to quantum solitons with exact numerical solutions
可积量子系统的非平衡动力学:具有精确数值解的量子孤子的代数几何方法
  • 批准号:
    21K03398
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum integrable systems and TQFT
量子可积系统和 TQFT
  • 批准号:
    2608481
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了