Theory of generalized particle filtering

广义粒子过滤理论

基本信息

  • 批准号:
    0515246
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

In the past decade, particle filtering has generated astounding interest among engineers and scientists with its capacity to process data that are modeled by dynamic systems. These methods belong to the family of procedures for sequential signal processing where the objectives are to filter, predict, or smooth unknown and time-varying signals from available observations. The general area of work in this research effort is the building of a new class of particle filters, the development of their theory, and their application to a number of important tasks.The known particle filtering methods require a mathematical representation of the system dynamics and assumptions about the state transition probability distribution function, and the likelihood of the states. These probabilistic assumptions are often inaccurate and made out of convenience, and in many cases lead to formidable degradations in performance of the particle filters. We develop a more general class of particle filters which do not use probabilistic model assumptions. Instead, the new filters are based on discrete measures defined by particle streams and associated costs that are sequentially updated. With the developed theory, we are able to build particle filters that are simpler, more accurate, more robust, and more flexible than the conventional ones. The standard particle filters, however, are particular instances of the new filters. We investigate in great detail various important issues including the foundations of the new filters, their convergence, connections of the new theory with existing theories, and its extensions to batch type signal processing. The filters are tested on various challenging problems.
在过去的十年中,粒子滤波因其处理动态系统建模数据的能力而引起了工程师和科学家的极大兴趣。这些方法属于顺序信号处理过程系列,其目标是从可用观测中过滤、预测或平滑未知且随时间变化的信号。这项研究工作的一般工作领域是构建一类新型粒子滤波器、发展其理论以及将其应用于许多重要任务。已知的粒子滤波方法需要系统动力学的数学表示以及关于状态转移概率分布函数和状态可能性的假设。 这些概率假设通常是不准确的,并且是出于方便而做出的,并且在许多情况下会导致粒子过滤器性能的严重下降。我们开发了一类更通用的粒子滤波器,它不使用概率模型假设。相反,新的过滤器基于由粒子流定义的离散测量以及顺序更新的相关成本。借助先进的理论,我们能够构建比传统粒子过滤器更简单、更准确、更稳健、更灵活的粒子过滤器。然而,标准粒子过滤器是新过滤器的特殊实例。我们详细研究了各种重要问题,包括新滤波器的基础、它们的收敛性、新理论与现有理论的联系及其对批处理类型信号处理的扩展。这些过滤器针对各种具有挑战性的问题进行了测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petar Djuric其他文献

Antidepressant Effects of ECT may be related to Hippocampal Neurogenesis
  • DOI:
    10.1016/j.brs.2015.01.354
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Colleen Loo;Narcis Cardoner;Harry Hallock;Jesus Pujol;Christos Pantelis;Dennis Velakoulis;Murat Yucel;Perminder Sachdev;Oren Contreras-Rodriguez;Mikel Urretavizcaya;Jose Menchon;Chao Suo;Petar Djuric;Mirjana Maletic-Savatic;Michael Valenzuela
  • 通讯作者:
    Michael Valenzuela
Survival and hospitalization in home versus Institutional hemodialysis—nine years of follow up
  • DOI:
    10.1007/s10047-025-01511-0
  • 发表时间:
    2025-05-18
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Verica Todorov Sakic;Petar Djuric;Ana Bulatovic;Jelena Bjedov;Aleksandar Jankovic;Snezana Pesic;Zivka Djuric;Radomir Naumovic
  • 通讯作者:
    Radomir Naumovic

Petar Djuric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petar Djuric', 18)}}的其他基金

CCF: Medium: Inference with dynamic deep probabilistic models
CCF:中:使用动态深度概率模型进行推理
  • 批准号:
    2212506
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
  • 批准号:
    2038801
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative proposal: GCR: In Search for the Interactions that Create Consciousness
合作提案:GCR:寻找创造意识的互动
  • 批准号:
    2021002
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CIF: Small: Dynamic Networks: Learning, Inference, and Prediction with Nonparametric Bayesian Methods
CIF:小型:动态网络:使用非参数贝叶斯方法进行学习、推理和预测
  • 批准号:
    1618999
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Support for Student Participation in the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
为学生参加 2014 年 IEEE 声学、语音和信号处理国际会议提供差旅支持
  • 批准号:
    1419742
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Small: Belief Evolutions in Networks of Bayesian Agents
CIF:小:贝叶斯代理网络的信念演变
  • 批准号:
    1320626
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: RFID Sense-a-Tags for the Internet of Things
EAGER:物联网的 RFID 传感标签
  • 批准号:
    1346854
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Small: Learning and herding in complex systems
CIF:小型:复杂系统中的学习和放牧
  • 批准号:
    1018323
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: An enhanced UHD RFID system for warehouse management
SBIR 第一阶段:用于仓库管理的增强型 UHD RFID 系统
  • 批准号:
    0912774
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: Optimization of Reconfigurable Architectures for Efficient Implementation of Particle Filters
ITR:优化可重构架构以高效实现粒子滤波器
  • 批准号:
    0220011
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

三维流形的Generalized Seifert Fiber分解
  • 批准号:
    11526046
  • 批准年份:
    2015
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Machine Learning for Generalized Multiscale Modeling
用于广义多尺度建模的机器学习
  • 批准号:
    9791802
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods
使用广义随机场似然提高空间扩展问题中的粒子滤波器性能
  • 批准号:
    1821074
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Integrated drug-in-cell therapy of in-stent restenosis
支架内再狭窄的综合药物细胞治疗
  • 批准号:
    9256528
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Generalized Gamma Stochastic Volatility Models
广义伽马随机波动率模型
  • 批准号:
    26780135
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Interacting Infinite Particle Systems and Random Matrices
无限粒子系统和随机矩阵的相互作用
  • 批准号:
    15540106
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exactly and quasi-Exactly Solvable multi-particle Quantum Systems and Generalized Supersymmetry
精确和准精确可解的多粒子量子系统和广义超对称性
  • 批准号:
    14540259
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Knowledge Discovery Systems by using the Hierarchical Bayesian Time Series Models
使用分层贝叶斯时间序列模型开发知识发现系统
  • 批准号:
    12558023
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The role of post-natal skeletal stem cells in health and disease
产后骨骼干细胞在健康和疾病中的作用
  • 批准号:
    7967034
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Environmental/genetic Risk Factors and Pathogenesis of Autoimmune Disease
环境/遗传风险因素与自身免疫性疾病的发病机制
  • 批准号:
    7734521
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Environmental/genetic Risk Factors and Pathogenesis of Autoimmune Disease
环境/遗传风险因素与自身免疫性疾病的发病机制
  • 批准号:
    7968166
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了