Generative number concepts in children
儿童的生成数字概念
基本信息
- 批准号:2213770
- 负责人:
- 金额:$ 50.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As the idiom goes, the natural numbers are as easy as one-two-three. However, learning about them as a child is not easy. It takes several years of formal and informal education to understand what number words mean, how each number relates to another, and that numbers are infinite. This project investigates how children come to understand that numbers are generative, that is, a new number can be generated endlessly. A new theoretical framework that integrates ideas from psychology, linguistics, and history is proposed, and cognitive developmental experiments will evaluate that theoretical framework. The outcomes of this project are expected to address where the fundamental human capacity for mathematical thinking comes from and, more broadly, to expand our knowledge about how humans make "infinite use of finite means," one of the deepest cognitive science questions yet to be answered. The foundational knowledge gained from this project is also expected to inspire new pedagogical approaches to STEM education that are based on the natural mechanisms of number acquisition.A key question in number acquisition research is how children learn that a set of rules allows the generation of new numbers indefinitely. Existing psychological theories propose children learn generative number concepts by using a formal mathematical principle, making it difficult to generate falsifiable hypotheses and test them empirically. This project suggests a departure from the abstract mathematical perspective and instead proposes an empirically testable and falsifiable hypothesis developed from an interdisciplinary analysis of the broad literature. Specifically, it proposes and tests the central hypothesis that generative number concepts are acquired by learning the polynomial representation of quantity enabled by the combinatorial structure of number words and Arabic numerals. This hypothesis will be tested using novel cognitive experiments in children between four and eight years of age. The outcomes of this project are expected to establish a novel psychologically plausible and falsifiable theory about number concepts and their acquisition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正如成语所说,自然数就像一二三一样简单。然而,作为一个孩子,了解他们并不容易。人们需要几年的正规和非正规教育才能理解数字的含义,每个数字与另一个数字的关系,以及数字是无限的。这个项目调查了孩子们是如何理解数字是生成的,也就是说,一个新的数字可以无限地产生。一个新的理论框架,整合了心理学,语言学和历史的思想,认知发展实验将评估该理论框架。该项目的成果预计将解决人类数学思维的基本能力来自哪里,更广泛地说,扩展我们对人类如何“无限利用有限手段”的知识,这是尚未回答的最深刻的认知科学问题之一。从这个项目中获得的基础知识也有望激发基于数字习得自然机制的STEM教育的新教学方法。数字习得研究中的一个关键问题是儿童如何学习一组规则允许无限期地生成新数字。现有的心理学理论建议儿童通过使用正式的数学原理来学习生成数字概念,这使得难以产生可证伪的假设并根据经验进行测试。该项目建议脱离抽象的数学角度,而是提出一个从广泛文献的跨学科分析中发展出来的可经验检验且可证伪的假设。具体来说,它提出并测试了中心假设,即生成数概念是通过学习由数字词和阿拉伯数字的组合结构实现的量的多项式表示来获得的。这一假设将在4至8岁的儿童中使用新的认知实验进行测试。该项目的成果预计将建立一个新的心理上合理的和可证伪的理论,关于数字概念和他们的收购。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joonkoo Park其他文献
Sensorimotor locus of the buildup activity in monkey lateral intraparietal area neurons.
猴子外侧顶内区神经元的感觉运动轨迹。
- DOI:
10.1152/jn.00733.2009 - 发表时间:
2010 - 期刊:
- 影响因子:2.5
- 作者:
Joonkoo Park;Jun Zhang - 通讯作者:
Jun Zhang
Neurocomputational principles underlying the number sense
数感背后的神经计算原理
- DOI:
10.1101/2022.06.01.494401 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Joonkoo Park;D. Huber - 通讯作者:
D. Huber
Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children.
符号数字处理背后的神经连接模式表明儿童的数学成就。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Joonkoo Park;Rosa Li;E. Brannon - 通讯作者:
E. Brannon
Developmental trajectory of neural specialization for letter and number visual processing.
字母和数字视觉处理的神经专业化的发展轨迹。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Joonkoo Park;Berry van den Berg;Crystal Chiang;M. Woldorff;E. Brannon - 通讯作者:
E. Brannon
Decoding of Electroencephalogram Signals Shows No Evidence of a Neural Signature for Subitizing in Sequential Numerosity
脑电图信号的解码没有显示出用于按顺序数字进行细分的神经特征的证据
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.2
- 作者:
M. Fornaciai;Joonkoo Park - 通讯作者:
Joonkoo Park
Joonkoo Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joonkoo Park', 18)}}的其他基金
CAREER: Neural investigations of magnitude processing as a pathway to understanding mathematical thinking
职业:幅度处理的神经研究作为理解数学思维的途径
- 批准号:
1654089 - 财政年份:2017
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
堆垒基与Narkiewicz常数的研究
- 批准号:11226279
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
- 批准号:30801022
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Linguistic Relativity in Acquisition and Processing of Number Concepts: A View from Classifier Languages
数字概念习得和处理中的语言相对论:分类语言的视角
- 批准号:
23K17272 - 财政年份:2023
- 资助金额:
$ 50.96万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
The Development of Number Concepts in Deaf and Hard of Hearing Children
聋哑儿童数字概念的发展
- 批准号:
1941002 - 财政年份:2020
- 资助金额:
$ 50.96万 - 项目类别:
Standard Grant
A study of learning environments for forming number concepts in early mathematics education
早期数学教育中形成数字概念的学习环境研究
- 批准号:
18K02630 - 财政年份:2018
- 资助金额:
$ 50.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Development of Number Concepts and Equal Distribution in Children with Intellectual Disabilities
智力障碍儿童数字概念的发展和平均分配
- 批准号:
24830037 - 财政年份:2012
- 资助金额:
$ 50.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of Numerical Notation Systems and its Relationship with Number Concepts and Number-related Tasks.
数字符号系统的发展及其与数字概念和数字相关任务的关系。
- 批准号:
23530875 - 财政年份:2011
- 资助金额:
$ 50.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: The role of language in children's acquisition of number concepts
职业:语言在儿童习得数字概念中的作用
- 批准号:
0845966 - 财政年份:2009
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant
Cognitive and cortical restructuring in the acquisition of negative number concepts.
负数概念习得中的认知和皮质重组。
- 批准号:
0814768 - 财政年份:2008
- 资助金额:
$ 50.96万 - 项目类别:
Continuing Grant