Physics-informed Learning for Dynamical Systems from Scarce Data

从稀缺数据中进行动力系统的物理知情学习

基本信息

  • 批准号:
    2214939
  • 负责人:
  • 金额:
    $ 44.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This award will support research that aims to develop trustworthy artificial intelligence functionality for systems with a physical embodiment, e.g., robots, unmanned vehicles, and infrastructure networks. While modern learning-based techniques offer unprecedented capabilities for nonlinear modeling and control, they often rely on excessive amounts of data and computing power and fail to meet safety specifications. This research will develop a new breed of learning techniques that effectively leverage existing knowledge, such as that based on the laws of physics. The resulting techniques have the potential to help safely deploy learning-enabled functionality with reasonable data requirements and calculated risks in nominal and off-nominal situations. Therefore, the research will help create an advantage for the U.S. in developing artificial intelligence while informing the public about the inherent risks. This research will bridge several disciplines including dynamical systems, control theory, deep learning, optimization, and applied mathematics. The award will support the training of students from diverse backgrounds and equip them with a mindset of inclusion necessary to counter the increasingly interdisciplinary challenges society is facing. Learning-based techniques offer new capabilities to model unknown dynamical systems and, in turn, facilitate predictions of future values of interest, synthesize control strategies, and verify safety of the closed-loop system. On the other hand, when employed for dynamical systems with a physical embodiment, purely data-driven methods can result in poor data efficiency, fail to generalize beyond their mere training domain, and even violate the underlying laws of physics. These deficiencies become particularly emphasized when the training dataset is relatively small. The central thesis of this project is that the effective inclusion of a-priori knowledge into learning can significantly improve data efficiency and model generalization to previously unseen regions of the state space. It focuses on physics-informed learning in two settings with severe data scarcity: The first is on learning after an abrupt change in the dynamics during operation where learning is limited by data available essentially from a single trajectory. The second is on training deep neural networks for dynamical systems using a “handful” of system trajectories, matching, or exceeding, the accuracy of conventional, merely data-driven deep learning methods with multiple orders of magnitude fewer trajectories. While the suitable learning artifacts, and the expectations from learning, are different in these two settings, the type of, and means for incorporating physics-based knowledge into learning are based on similar principles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持旨在为具有物理体现的系统(如机器人、无人驾驶车辆和基础设施网络)开发可信赖的人工智能功能的研究。虽然现代基于学习的技术为非线性建模和控制提供了前所未有的能力,但它们往往依赖于过多的数据和计算能力,无法满足安全规范。这项研究将开发一种新的学习技术,有效地利用现有的知识,如基于物理定律的知识。由此产生的技术有可能帮助在名义和非名义情况下,以合理的数据需求和计算的风险安全地部署支持学习的功能。因此,这项研究将有助于为美国在发展人工智能方面创造优势,同时向公众通报其固有的风险。这项研究将跨越多个学科,包括动力系统、控制理论、深度学习、优化和应用数学。该奖项将支持培养来自不同背景的学生,并使他们具备必要的包容心态,以应对社会面临的日益跨学科的挑战。基于学习的技术提供了新的能力来建模未知的动态系统,反过来,促进对未来感兴趣的值的预测,综合控制策略,并验证闭环系统的安全性。另一方面,当用于具有物理体现的动力系统时,纯粹的数据驱动方法可能导致数据效率低下,无法推广到其单纯的训练领域之外,甚至违反物理的基本定律。当训练数据集相对较小时,这些缺陷变得特别突出。该项目的中心论点是,有效地将先验知识纳入学习可以显着提高数据效率和模型泛化到以前未见过的状态空间区域。它侧重于在两种数据严重缺乏的情况下的物理知识学习:第一种是在操作过程中动态突然变化之后的学习,其中学习基本上受到来自单一轨迹的可用数据的限制。第二个是使用“少数”系统轨迹来训练动态系统的深度神经网络,匹配或超过传统的,仅仅是数据驱动的深度学习方法的精度,轨迹要少几个数量级。虽然在这两种情况下,合适的学习产物和学习的期望是不同的,但将基于物理的知识纳入学习的类型和方法是基于类似的原则。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ufuk Topcu其他文献

Basis-to-basis operator learning using function encoders
  • DOI:
    10.1016/j.cma.2024.117646
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Tyler Ingebrand;Adam J. Thorpe;Somdatta Goswami;Krishna Kumar;Ufuk Topcu
  • 通讯作者:
    Ufuk Topcu
Relationship design for socially-aware behavior in static games
  • DOI:
    10.1007/s10458-025-09699-4
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Shenghui Chen;Yigit E. Bayiz;David Fridovich-Keil;Ufuk Topcu
  • 通讯作者:
    Ufuk Topcu

Ufuk Topcu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ufuk Topcu', 18)}}的其他基金

Collaborative Research: CPS: Medium: Sharing the World with Autonomous Systems: What Goes Wrong and How to Fix It
合作研究:CPS:媒介:与自治系统共享世界:出了什么问题以及如何修复它
  • 批准号:
    2211432
  • 财政年份:
    2022
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
  • 批准号:
    1646522
  • 财政年份:
    2017
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Continuing Grant
CAREER: Provably Correct Shared Control for Human-Embedded Autonomous Systems
职业:可证明正确的人体嵌入式自主系统共享控制
  • 批准号:
    1652113
  • 财政年份:
    2017
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Autonomy Protocols: From Human Behavioral Modeling to Correct-by-Construction, Scalable Control
CPS:协同:协作研究:自主协议:从人类行为建模到构建校正、可扩展控制
  • 批准号:
    1550212
  • 财政年份:
    2015
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Architectural and Algorithmic Solutions for Large Scale PEV Integration into Power Grids
CPS:协同:协作研究:大规模 PEV 集成到电网的架构和算法解决方案
  • 批准号:
    1558404
  • 财政年份:
    2015
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Autonomy Protocols: From Human Behavioral Modeling to Correct-by-Construction, Scalable Control
CPS:协同:协作研究:自主协议:从人类行为建模到构建校正、可扩展控制
  • 批准号:
    1446479
  • 财政年份:
    2014
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Architectural and Algorithmic Solutions for Large Scale PEV Integration into Power Grids
CPS:协同:协作研究:大规模 PEV 集成到电网的架构和算法解决方案
  • 批准号:
    1238984
  • 财政年份:
    2012
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Architectural and Algorithmic Solutions for Large Scale PEV Integration into Power Grids
CPS:协同:协作研究:大规模 PEV 集成到电网的架构和算法解决方案
  • 批准号:
    1312390
  • 财政年份:
    2012
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
  • 批准号:
    2339996
  • 财政年份:
    2024
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Continuing Grant
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
  • 批准号:
    2338642
  • 财政年份:
    2024
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243776
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243775
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
    Standard Grant
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 44.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了