Constant mean curvature surfaces of higher genus
高维常数平均曲率曲面
基本信息
- 批准号:251913428
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of surfaces in 3-dimensional space forms with special geometric properties is an important part of differential geometry. Among the most interesting are those surfaces critical with respect to the area functional (under fixed enclosed volume), the minimal surfaces respectively the constant mean curvature (CMC) surfaces. CMC surfaces are determined by their associated family of flat special linear connections on a fixed rank 2 bundle. In the case of CMC tori these flat connections can be parametrized in terms of the spectral data because the generic flat connection on a torus reduces to the sum of flat line bundle connections due to the abelian nature of the first fundamental group of a torus. As a consequence, CMC tori are parametrized in terms of algebro-geometric data. By these integrable system methods, many new examples of compact CMC and minimal tori have been constructed. More recently also questions concerning the moduli space of solutions have begun to be investigated in detail.On the other hand, there are only few known examples of compact CMC and minimal surfaces of higher genus. Notably, the known examples like the Lawson surfaces are only given implicitly as solutions to non-linear partial differential equations. In recent work, we have extended the integrable systems approach to symmetric CMC surfaces of higher genus and developed a spectral curve representation for those surfaces. This yields new tools for a systematic study of CMC and minimal surfaces of higher genus and their moduli spaces.The goal of the project is to improve our understanding of CMC and minimal surfaces of higher genus by integrable systems methods. Of particular importance is the enhancements of the construction of admissible spectral data. For this purpose, we will study the generalized Whitham flow in detail. Its long time existence would yield new families of CMC surfaces of higher genus and would lead to a rigorous description of the moduli space of embedded symmetric CMC surfaces of genus 2.Another goal is the extension of the spectral curve approach to general compact surfaces via abelianization of the moduli space of flat connections, and to develop a method, which generates spectral data of non-symmetric CMC surfaces of higher genus.As a byproduct of our explicit approach to CMC surfaces, we have been able to carry through numerical experiments with higher genus CMC surfaces. These have led to a detailed picture of the moduli space of CMC surfaces of genus 2 in the 3-sphere with symmetries. A natural task is to extend our experiments to higher genus surfaces without symmetries in order to obtain reliable conjectures concerning the moduli space of compact CMC surfaces.
研究三维空间形式中具有特殊几何性质的曲面是微分几何的重要组成部分。其中最有趣的是那些表面的关键方面的功能(在固定的封闭体积),最小的表面分别恒定平均曲率(CMC)的表面。CMC曲面是由它们在固定秩2丛上的相关平坦特殊线性联络族确定的。在CMC环面的情况下,这些平坦连接可以根据谱数据参数化,因为环面上的一般平坦连接由于环面的第一基本群的阿贝尔性质而减少为平坦线束连接的总和。因此,CMC圆环面根据代数几何数据进行参数化。利用这些可积系统方法,构造了许多新的紧CMC和极小环面的例子。最近也开始详细研究有关的模空间的解决方案的问题。另一方面,只有少数已知的例子,紧凑CMC和极小曲面的高亏格。值得注意的是,已知的例子,如劳森表面只隐含地给出了非线性偏微分方程的解决方案。在最近的工作中,我们已经扩展了可积系统的方法,对称CMC曲面的高亏格,并开发了这些曲面的谱曲线表示。这为系统地研究CMC和高亏格极小曲面及其模空间提供了新的工具,本项目的目标是通过可积系统的方法来提高我们对CMC和高亏格极小曲面的理解。特别重要的是,可接受的光谱数据的建设的增强。为此,我们将详细研究广义Whitham流。它的长期存在将产生新的高亏格的CMC曲面族,并导致亏格2的嵌入对称CMC曲面的模空间的严格描述。另一个目标是通过平坦联络的模空间的阿贝尔化将谱曲线方法推广到一般紧曲面,并发展一种方法,该方法生成了高亏格的非对称CMC曲面的谱数据,作为CMC曲面显式方法的副产品,我们已经能够对高亏格的CMC曲面进行数值实验。这些导致了一个详细的图片的CMC表面的模空间的亏格2在3球对称。一个自然的任务是将我们的实验扩展到没有对称性的更高亏格的曲面,以获得关于紧凑CMC曲面的模空间的可靠描述。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Automorphisms of a Rank One Deligne-Hitchin Moduli Space
一阶Deligne-Hitchin模空间的自同构
- DOI:10.3842/sigma.2017.072
- 发表时间:2017
- 期刊:
- 影响因子:0.9
- 作者:I. Biswas;S. Heller
- 通讯作者:S. Heller
The spectral curve theory for (k, l)-symmetric CMC surfaces
(k, l) 对称 CMC 表面的谱曲线理论
- DOI:10.1016/j.geomphys.2015.08.010
- 发表时间:2015
- 期刊:
- 影响因子:1.5
- 作者:L. Heller;S. Heller;N. Schmitt
- 通讯作者:N. Schmitt
The asymptotic behavior of the monodromy representation of the associated family of a compact CMC surface
紧致CMC曲面相关族的单向表示的渐近行为
- DOI:10.1112/blms/bdw036
- 发表时间:2016
- 期刊:
- 影响因子:0.9
- 作者:S. Heller
- 通讯作者:S. Heller
Abelianization of Fuchsian Systems on a 4-punctured sphere and applications
4 穿刺球上 Fuchsian 系统的阿贝尔化及其应用
- DOI:10.4310/jsg.2016.v14.n4.a4
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:L. Heller;S. Heller
- 通讯作者:S. Heller
Navigating the space of symmetric CMC surfaces
在对称 CMC 曲面空间中导航
- DOI:10.4310/jdg/1542423626
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:L. Heller;S. Heller;N. Schmitt
- 通讯作者:N. Schmitt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Sebastian Heller其他文献
Privatdozent Dr. Sebastian Heller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
可靠性理论
- 批准号:11422109
- 批准年份:2014
- 资助金额:100 万元
- 项目类别:优秀青年科学基金项目
基于对象与专家知识的高分辨率SAR图像典型地物提取研究
- 批准号:41071274
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
背景反匹配和微分流形的目标稳健跟踪与归属判别
- 批准号:60805045
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
量子无偏基的理论及应用研究
- 批准号:10704001
- 批准年份:2007
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
可视跟踪中的稳健性研究
- 批准号:60642009
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:专项基金项目
相似海外基金
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Embedded constant mean curvature hypersurfaces
嵌入式常平均曲率超曲面
- 批准号:
2417013 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
- 批准号:
EP/M024512/1 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grant
Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
- 批准号:
26610016 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A new development of constant mean curvature surfaces
常平均曲率曲面的新发展
- 批准号:
25400062 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1309236 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
The geometry of a surface embedded in a 3-manifold with constant mean curvature
嵌入具有恒定平均曲率的 3 流形中的表面的几何形状
- 批准号:
EP/L003163/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
The shape of nonzero constant mean curvature surfaces embedded in Euclidean space.
嵌入欧几里得空间中的非零恒定平均曲率曲面的形状。
- 批准号:
EP/I01294X/1 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grant
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1004003 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant