Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
基本信息
- 批准号:1938106
- 负责人:
- 金额:$ 24.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching research objective of this project is to develop statistical tools to help power network operators in increasing the solar generator situational awareness. The goals include inferring the solar power generators, their locations, and status, from the real-time power supply and consumption data using sequential data. We take a novel approach leveraging the fact that the on and off of the solar generators will introduce change-points in the difference time series of the power supply and consumption, and propose a statistical framework for solar situational awareness by detecting change-points and estimating their magnitudes from sequential data. We use a bottom-up approach, which is a natural fit to the hierarchical structure of the power networks: we detect change-points at the unit level, and then aggregate them on a network level, using multi-dimensional point process model, as well as considering the inherent sparse and low-dimensional nature of the observations. The change-point detection will be combined with multi-fidelity models to achieve network level prediction of power generation. The results will be verified on simulated high-fidelity time-series and real-data over dynamic power networks.Solar power installations have been increasing in both the residential and commercial areas. However, it is very difficult to know the exact numbers, locations, installed capacities, and production status of these PV panels, especially due to the increasing number of behind-the-meter installations of PV panels and the intrinsic stochasticity in solar production. Not knowing the status of the solar generators in the network can pose a significant challenge to stability and security of power distribution and transmission systems. The precise knowledge of the number, location, capacity, and operational status of residential PV units within a distribution system will be very critical to the daily operation and planning of distribution system and eventually that of transmission systems. Currently, there is no effective way to infer in real-time the solar generators' status in a large-scale power network. The proposed research will change the landscape and significantly advance the state-of-the-art in using statistical methods for solar situational awareness. Utility companies, industry regulators and solar panel marketers are a few of the groups that will benefit from the algorithm developed for situational awareness. For example, having access to detailed information of the status of solar PV production in a given neighborhood can enable local utilities to better balance the area's power supply and demand, improve the quality of electricity service to end users, and increase the reliability and security of distribution power grids. The proposed research will be tightly integrated with education components, and the research results will be made available to national labs as open source software and research findings will be disseminated via conferences and journal publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的总体研究目标是开发统计工具,以帮助电网运营商提高对太阳能发电机的态势感知。目标包括使用顺序数据从实时电力供应和消耗数据推断太阳能发电机、它们的位置和状态。我们采用了一种新的方法,利用太阳能发电机的开启和关闭会在电力供应和消耗的不同时间序列中引入变化点这一事实,通过检测变化点并从序列数据中估计变化点的大小,提出了一个太阳能态势感知的统计框架。我们使用自下而上的方法,这是一种自然适合电力网络分层结构的方法:我们在单元级别检测变化点,然后使用多维点过程模型在网络级聚合它们,并考虑到观测数据固有的稀疏性和低维性。将变点检测与多保真模型相结合,实现对发电量的网级预测。结果将在模拟的高保真时间序列和动态电网上的实时数据上得到验证。太阳能在居民区和商业区的装机容量都在增加。然而,很难知道这些光伏电池板的确切数量、位置、装机容量和生产状况,特别是由于光伏电池板安装在米后的数量越来越多,以及太阳能生产固有的随机性。不知道电网中太阳能发电机的状态会对配电和输电系统的稳定性和安全性构成重大挑战。准确了解配电系统中住宅光伏机组的数量、位置、容量和运行状态,对配电系统乃至输电系统的日常运行和规划至关重要。目前,还没有一种有效的方法来实时推断大规模电网中太阳能发电机的状态。这项拟议的研究将改变这一格局,并极大地推进使用统计方法进行太阳态势感知的最先进水平。公用事业公司、行业监管机构和太阳能电池板营销者等少数群体将受益于为态势感知开发的算法。例如,获得给定社区太阳能光伏生产状态的详细信息,可以使当地公用事业公司更好地平衡该地区的电力供需,提高对最终用户的电力服务质量,并增加配电网的可靠性和安全性。这项拟议的研究将与教育部分紧密结合,研究成果将作为开源软件提供给国家实验室,研究成果将通过会议和期刊出版物传播。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convex Parameter Recovery for Interacting Marked Processes
交互标记过程的凸参数恢复
- DOI:10.1109/jsait.2020.3040999
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Juditsky, Anatoli;Nemirovski, Arkadi;Xie, Liyan;Xie, Yao
- 通讯作者:Xie, Yao
Spatio-Temporal Wildfire Prediction Using Multi-Modal Data
- DOI:10.1109/jsait.2023.3276054
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Chen Xu;Yao Xie;Daniel A. Zuniga Vazquez;Rui Yao;Feng Qiu
- 通讯作者:Chen Xu;Yao Xie;Daniel A. Zuniga Vazquez;Rui Yao;Feng Qiu
Online Detection of Cascading Change-Points Using Diffusion Networks
- DOI:10.1109/allerton49937.2022.9929381
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Rui Zhang;Yao Xie;Rui Yao;Feng Qiu
- 通讯作者:Rui Zhang;Yao Xie;Rui Yao;Feng Qiu
Conformal prediction interval for dynamic time-series
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Chen Xu;Yao Xie
- 通讯作者:Chen Xu;Yao Xie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Xie其他文献
Behavioral changes and neuronal damage in rhesus monkeys after ten weeks ketamine administration involve prefrontal cortex dopamine D2 receptor and dopamine transporter
施用氯胺酮十周后恒河猴的行为变化和神经元损伤涉及前额皮质多巴胺 D2 受体和多巴胺转运蛋白
- DOI:
10.1016/j.neuroscience.2019.07.022 - 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Zongbo Sun;Ye Ma;Lei Xie;Jinzhuang Huang;Shouxing Duan;Ruiwei Guo;Yao Xie;Junyao Lv;Zhirong Lin;Shuhua Ma - 通讯作者:
Shuhua Ma
Nearly second-order optimality of online joint detection and estimation via one-sample update schemes
通过单样本更新方案实现在线联合检测和估计的近二阶最优性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Liyan Xie;Yao Xie;Huan Xu - 通讯作者:
Huan Xu
The Predictive Value of On-treatment Virological Response for Sustained Virological Response in C h r o n i c H e p a i i s Personalized Treatment Program
治疗中病毒学反应对慢性肝炎持续病毒学反应的预测价值是个性化治疗计划
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Minghui Li;Yao Xie;Yao Lu;Guo;Lu Zhang;G. Shen;L. Zhuang;Ju;Hu;J. Dong;Cai;Lei;Li;Xing;Min Yang;;Zhong Wu;Hui Zhao;Shu;Jun Cheng;Dao - 通讯作者:
Dao
Development of Intra-Aortic Balloon Pump with Vascular Stent and Vitro Simulation Verification
带血管支架的主动脉内球囊泵的研制及体外模拟验证
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yao Xie;Dong Yang;Honglong Yu;Kun Wang;Qilian Xie - 通讯作者:
Qilian Xie
Interpretable Generative Neural Spatio-Temporal Point Processes
可解释的生成神经时空点过程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shixiang Zhu;Shuang Li;Yao Xie - 通讯作者:
Yao Xie
Yao Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Xie', 18)}}的其他基金
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220387 - 财政年份:2022
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
- 批准号:
1830210 - 财政年份:2018
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
- 批准号:
1650913 - 财政年份:2017
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
- 批准号:
1551297 - 财政年份:2015
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The use of microRNA expression profiling in the detection and prediction of Bovine Tuberculosis
microRNA表达谱在牛结核病检测和预测中的应用
- 批准号:
10096799 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Collaborative R&D
ARISTOTELES - Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
亚里士多德 - 应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
- 批准号:
10103153 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Machine learning applications to sports event prediction and detection of match-fixing in sports betting markets
机器学习在体育赛事预测和体育博彩市场假球检测中的应用
- 批准号:
2894301 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Studentship
Volcanic earthquake hazard prediction by sulfide gas detection system
硫化物气体检测系统火山地震灾害预测
- 批准号:
23H01664 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Applying ARtificial Intelligence to define clinical trajectorieS for personalized predicTiOn and early deTEction of comorbidity and muLtimorbidity pattErnS (ARISTOTELES)
应用人工智能定义临床轨迹,以进行个性化预测以及合并症和多发病模式的早期检测(亚里士多德)
- 批准号:
10102350 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
- 批准号:
10087783 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
Advancing machine learning to achieve real-world early detection and personalised disease outcome prediction of inflammatory arthritis
推进机器学习以实现炎症性关节炎的真实早期检测和个性化疾病结果预测
- 批准号:
EP/Y019393/1 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Research Grant
Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
- 批准号:
10105578 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
EU-Funded
Optimizing Cancer Prediction in Ontario: Leveraging Electronic Medical Records and Machine Learning for Early Detection
优化安大略省的癌症预测:利用电子病历和机器学习进行早期检测
- 批准号:
494938 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Operating Grants