CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
基本信息
- 批准号:1650913
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Streaming data over networks have become ubiquitous in today?s world. A fundamental question is how to detect change-points (over time and space) from network streaming data as quickly as possible. This arises from a wide range of applications including geophysical exploration, social network surveillance, power network monitoring, multi-sensor systems for smart cities, as well as cyber security. Currently, not much is known about how to model these data, how to design an algorithm through a rigorous theoretical framework, how to implement algorithms efficiently online, and how fast we can detect the change with false alarms under control. The proposed research will address these fundamental theoretical and algorithmic questions. The efforts will lead not only to novel technological advances but also help with a much wider interdisciplinary audience in related fields. The overarching research objective of this project is to develop a modeling and algorithmic framework with theoretical performance guarantees for sequential change-point detection over networks. This bridges the fundamental gap between the statistical and computational approaches. Regarding modeling, the proposed work aims to capture complex dependence of network streaming data and exploit the structure of changes in the network setting. Regarding algorithm design, the goals include efficient online implementation, scalability to high dimensionality, and adaptiveness to data dynamics. Regarding theory, the goals are to establish optimality and to characterize the fundamental performance tradeoff between false alarms and detection delay. The proposed research will build on recent progress in modeling complex network data such as network point processes and correlation networks, algorithmic development such as sequential optimization, sketching, community detection, and subspace tracking, as well as theoretical advances in studying tail probabilities and extremal value theory.
在S的世界里,通过网络传输数据已经变得无处不在。一个基本问题是如何尽可能快地从网络流数据中检测变化点(在时间和空间上)。这源于广泛的应用,包括地球物理勘探、社会网络监控、电网监控、智能城市的多传感器系统以及网络安全。目前,关于如何对这些数据建模,如何通过严格的理论框架设计算法,如何在线高效地实现算法,以及在控制错误警报的情况下检测变化的速度,我们知道的还很少。拟议的研究将解决这些基本的理论和算法问题。这些努力不仅将带来新的技术进步,还将有助于相关领域更广泛的跨学科受众。该项目的主要研究目标是开发一个模型和算法框架,为网络上的顺序变点检测提供理论上的性能保证。这就弥合了统计方法和计算方法之间的根本差距。在建模方面,提出的工作旨在捕获网络流数据的复杂依赖关系,并利用网络环境中变化的结构。在算法设计方面,目标包括高效的在线实现、对高维的可伸缩性以及对数据动态的适应性。在理论上,目标是建立最优性,并描述虚警和检测延迟之间的基本性能权衡。拟议的研究将建立在对复杂网络数据(如网络点过程和关联网络)建模的最新进展、序贯优化、草图绘制、社区检测和子空间跟踪等算法发展以及尾部概率和极值理论研究的理论进展的基础上。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Window-Limited CUSUM for Sequential Change Detection
用于顺序变化检测的窗口限制 CUSUM
- DOI:10.1109/tit.2023.3274646
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Xie, Liyan;Moustakides, George V.;Xie, Yao
- 通讯作者:Xie, Yao
PERCEPT: A New Online Change-Point Detection Method using Topological Data Analysis
PERCEPT:一种利用拓扑数据分析的新型在线变点检测方法
- DOI:10.1080/00401706.2022.2124312
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Zheng, Xiaojun;Mak, Simon;Xie, Liyan;Xie, Yao
- 通讯作者:Xie, Yao
Robust sequential change-point detection by convex optimization
通过凸优化进行稳健的顺序变化点检测
- DOI:10.1109/isit.2017.8006736
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Cao, Yang;Xie, Yao
- 通讯作者:Xie, Yao
FIRST-ORDER OPTIMAL SEQUENTIAL SUBSPACE CHANGE-POINT DETECTION
一阶最优顺序子空间变点检测
- DOI:10.1109/globalsip.2018.8646377
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Xie, Liyan;Moustakides, George V.;Xie, Yao
- 通讯作者:Xie, Yao
Asynchronous Multi-Sensor Change-Point Detection for Seismic Tremors
地震颤动的异步多传感器变化点检测
- DOI:10.1109/isit.2019.8849413
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Xie, Liyan;Xie, Yao;Moustakides, George V.
- 通讯作者:Moustakides, George V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Xie其他文献
Behavioral changes and neuronal damage in rhesus monkeys after ten weeks ketamine administration involve prefrontal cortex dopamine D2 receptor and dopamine transporter
施用氯胺酮十周后恒河猴的行为变化和神经元损伤涉及前额皮质多巴胺 D2 受体和多巴胺转运蛋白
- DOI:
10.1016/j.neuroscience.2019.07.022 - 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Zongbo Sun;Ye Ma;Lei Xie;Jinzhuang Huang;Shouxing Duan;Ruiwei Guo;Yao Xie;Junyao Lv;Zhirong Lin;Shuhua Ma - 通讯作者:
Shuhua Ma
Nearly second-order optimality of online joint detection and estimation via one-sample update schemes
通过单样本更新方案实现在线联合检测和估计的近二阶最优性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Liyan Xie;Yao Xie;Huan Xu - 通讯作者:
Huan Xu
The Predictive Value of On-treatment Virological Response for Sustained Virological Response in C h r o n i c H e p a i i s Personalized Treatment Program
治疗中病毒学反应对慢性肝炎持续病毒学反应的预测价值是个性化治疗计划
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Minghui Li;Yao Xie;Yao Lu;Guo;Lu Zhang;G. Shen;L. Zhuang;Ju;Hu;J. Dong;Cai;Lei;Li;Xing;Min Yang;;Zhong Wu;Hui Zhao;Shu;Jun Cheng;Dao - 通讯作者:
Dao
Development of Intra-Aortic Balloon Pump with Vascular Stent and Vitro Simulation Verification
带血管支架的主动脉内球囊泵的研制及体外模拟验证
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yao Xie;Dong Yang;Honglong Yu;Kun Wang;Qilian Xie - 通讯作者:
Qilian Xie
Interpretable Generative Neural Spatio-Temporal Point Processes
可解释的生成神经时空点过程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shixiang Zhu;Shuang Li;Yao Xie - 通讯作者:
Yao Xie
Yao Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Xie', 18)}}的其他基金
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220387 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
- 批准号:
1938106 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
- 批准号:
1830210 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
- 批准号:
1551297 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Too quick or too slow? Unpacking digital temporalities in networked Vietnam
太快还是太慢?
- 批准号:
DE240100202 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
SPIKEPro - SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSING
SPIKEPro - 用于快速高效处理的 SPIKING 光子电子 IC
- 批准号:
10098316 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
5G Construction Quick Easy Sustainable Technology (5G-CONQuEST)
5G建设快速简单可持续技术(5G-CONQuEST)
- 批准号:
10041349 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Precise and quick prediction of electron conduction levels in organic semiconductors using machine learning
使用机器学习精确快速预测有机半导体中的电子传导水平
- 批准号:
23K17900 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Novel EV Quick Charging System using Resonance Type MMC with PWM and PAM Complex Control
使用具有 PWM 和 PAM 复合控制的谐振型 MMC 开发新型电动汽车快速充电系统
- 批准号:
23K03796 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Pre-Clinical Validation of Quantitative Imaging of Cell State Kinetics (QuICK) for Functional Precision Oncology
用于功能性精准肿瘤学的细胞状态动力学定量成像 (QuICK) 的开发和临床前验证
- 批准号:
10737379 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Quick and Accurate Measurements of HIV Broadly Neutralizing Antibody Susceptibility
快速准确地测量 HIV 广泛中和抗体敏感性
- 批准号:
10676422 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Novel OMV vaccine platform for quick response to Disease X
新型 OMV 疫苗平台可快速应对 X 病
- 批准号:
10087303 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Small Business Research Initiative
A quick, and robust, and unbiased platform for circular RNAs isolation, discovery and profiling.
一个快速、强大且公正的循环 RNA 分离、发现和分析平台。
- 批准号:
10761203 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: