I-Corps: Software that predicts which undergraduates are at risk of dropping out or requiring more than four years to graduate

I-Corps:预测哪些本科生有退学风险或需要四年以上才能毕业的软件

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of an artificial intelligence (AI)-based technology to enhance the understanding of college student success and how to help students align their financial resources and academic plans. The proposed technology advances techniques in data engineering, machine learning, and visualization, and may enable colleges and universities to leverage their massive student academic and financial records to support students’ success in more sophisticated, targeted capacities. The proposed technology may help higher education institutions achieve strategic goals for increasing graduation rates, improving time-to-degree completion, and eliminating equity gaps in graduation outcomes for low-income students. Students using the proposed technology may benefit from insights gained into the runway of eligibility for federal financial aid, allowing students to make more informed and efficient degree planning choices, graduate before exhausting lifetime aid eligibility, and limit their educational expenses and debt by reducing their overall time to degree. More individuals may earn baccalaureate degrees in less time and with less overall expense and student debt, and be ready to contribute better to society.This I-Corps project is based on the development of an intelligent system that incorporates financial, academic, and demographic data to accurately predict whether undergraduates are likely to graduate from 4-year institutions and if they will graduate within four years or more. The proposed technology has been designed to identify students who are at increased risk in terms of their financial health, including students on a trajectory to exhaust lifetime-limited federal financial aid resources before graduating. In addition, the developed scripts for data cleaning and feature engineering may be easily changed to fit a given university’s data models. Undergraduates may be able to use the proposed advanced web and mobile technologies to wisely plan their academic coursework in order to graduate before their financial aid runs out, resulting in improved academic outcomes. A full stack model of development characteristics includes software with layers developed based on the business requirements and processes while complying with flexible technology capable of working alone or integrating with existing enterprise software, secure integration of machine learning algorithms through microservices, and the ability to scale to large and small school sizes and integrate with different enterprise information systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发一种基于人工智能(AI)的技术,以提高对大学生成功的理解,以及如何帮助学生调整他们的财务资源和学术计划。拟议的技术推进了数据工程、机器学习和可视化技术,并可能使高校能够利用其大量的学生学术和财务记录来支持学生在更复杂、更有针对性的能力方面取得成功。拟议的技术可以帮助高等教育机构实现提高毕业率,改善完成学位的时间以及消除低收入学生毕业结果中的公平差距的战略目标。使用拟议技术的学生可能会受益于对联邦财政援助资格的深入了解,使学生能够做出更明智和更有效的学位规划选择,在用尽终身援助资格之前毕业,并通过减少他们的整体时间来限制他们的教育费用和债务。更多的人可以在更短的时间内获得学士学位,并减少总费用和学生债务,并准备为社会做出更好的贡献。这个I-Corps项目是基于一个智能系统的开发,该系统结合了财务,学术和人口统计数据,以准确预测本科生是否有可能从四年制院校毕业,以及他们是否会在四年或更长时间内毕业。这项拟议中的技术旨在识别那些在财务健康方面面临更大风险的学生,包括那些在毕业前耗尽终身有限的联邦财政援助资源的学生。此外,开发的数据清理和特征工程脚本可以很容易地改变,以适应给定的大学的数据模型。本科生可以使用拟议的先进网络和移动的技术来明智地规划他们的学术课程,以便在他们的经济援助用完之前毕业,从而提高学术成果。开发特征的全栈模型包括具有基于业务需求和流程开发的层的软件,同时遵守能够单独工作或与现有企业软件集成的灵活技术,通过微服务安全集成机器学习算法,以及扩展到大型和小型学校规模并与不同企业信息系统集成的能力。该奖项反映了NSF的法定基金会的使命是履行其使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评价,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Dorodchi其他文献

Automatic tumor lesion detection and segmentation using histogram-based gravitational optimization algorithm
使用基于直方图的重力优化算法自动检测和分割肿瘤病灶
Design and Implementation of an Activity-Based Introductory Computer Science Course (CS1) with Periodic Reflections Validated by Learning Analytics
基于活动的计算机科学入门课程 (CS1) 的设计和实施,并通过学习分析验证定期反思
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Dorodchi;Aileen Benedict;Devansh Desai;M. Mahzoon;S. Macneil;Nasrin Dehbozorgi
  • 通讯作者:
    Nasrin Dehbozorgi
Directing Incoming CS Students to an Appropriate Introductory Computer Science Course
指导计算机科学新生学习适当的计算机科学入门课程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leo C. Ureel;J. Heliotis;Mohsen Dorodchi;M. B. Ada;Victoria Eisele;Megan E. Lutz;Ethel Tshukudu
  • 通讯作者:
    Ethel Tshukudu
Teaching an Undergraduate Software Engineering Course using Active Learning and Open Source Projects
使用主动学习和开源项目教授本科软件工程课程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Dorodchi;Erfan Al;Mohammad Nagahisarchoghaei;Rohit Shenvi Diwadkar;Aileen Benedict
  • 通讯作者:
    Aileen Benedict
Exploring the Role of ChatGPT in Education: Applications and Challenges
探索 ChatGPT 在教育中的作用:应用和挑战

Mohsen Dorodchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Dorodchi', 18)}}的其他基金

I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Improving the Persistence and Success of Students from Underrepresented Populations in Computer Science
提高计算机科学领域代表性不足人群的学生的坚持和成功
  • 批准号:
    1742461
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatial Skills and Success in Introductory Computing
协作研究:空间技能和入门计算的成功
  • 批准号:
    1712331
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
  • 批准号:
    2413092
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
MUSE: Multi-Modal Software Evolution
MUSE:多模式软件演进
  • 批准号:
    EP/W015927/2
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
  • 批准号:
    2402381
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
HSI Pilot Project: Improving Experiential Skills for a Diverse Software Engineering Workforce via Project-based Internships
HSI 试点项目:通过基于项目的实习提高多元化软件工程人员的经验技能
  • 批准号:
    2345141
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CRII: CSR: Towards an Edge-enabled Software-Defined Vehicle Framework for Dynamic Over-the-Air Updates
CRII:CSR:迈向支持边缘的软件定义车辆框架,用于动态无线更新
  • 批准号:
    2348151
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Automated Software Testing Platform
自动化软件测试平台
  • 批准号:
    10092457
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了