CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
基本信息
- 批准号:2245907
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the era of big data, it is increasingly challenging for domain experts, such as physicians and pharmaceutical scientists, to efficiently retrieve relevant information from different databases to support their decision-making. Knowledge screening, including searching and filtering, based on traditional relational databases may suffer from several problems. For example, keyword-based searching and rule-based filtering can only handle limited types of questions and lack flexibility. Over the past few years, modern deep learning methods have alleviated this problem by automatically translating natural language questions into structured query languages. However, if different types of data such as tabular, textual, and heterogeneous graph data are consolidated into a relational database with many tables, structured queries can become very complex, which poses new challenges to deep learning models. This project will tackle these challenges by designing a new paradigm based on non-relational databases that store data in a more flexible non-tabular form. The new paradigm can easily incorporate reasoning into question-to-query translation, enabling deep learning models to handle more complex questions, which will benefit many domain-specific applications. The project will also promote teaching and mentoring activities, such as developing new courses and training of next generation experts in machine learning, natural language processing, data management, and health informatics. The project outcomes and observations will be open for public use.The project will forge a new research direction for natural language-driven knowledge screening on non-relational databases. Although there are many well-known, efficient, and scalable non-relational databases and search engines, little effort has been devoted to developing natural language querying methods for them and exploiting their potential. This project aims to fill this gap by designing new underlying frameworks for natural language-based searching and querying, including data consolidation in non-relational databases, reasoning integration in both databases and query templates, and human-in-the-loop model development and evaluations. Two primary research activities will be undertaken based on a popular search engine known as ElasticSearch: (1) The investigator will develop new deep learning models for translating natural language questions into ElasticSearch queries and create new datasets for training and evaluating the models. (2) The investigator will propose a unified approach, standard format, and extensible way to create knowledge “nuggets” to store multi-modal data and develop new question-generation models to automatically generate questions from nested knowledge. The project will produce a variety of outcomes, such as data used for model development, algorithms for model training and inference, and annotation tools used for creating training data. These products will benefit data management and screening, and support decision-making in healthcare, bioinformatics, and scientific research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,如何从不同的数据库中高效地检索相关信息以支持其决策,对医生和制药科学家等领域专家来说是一个越来越大的挑战。基于传统关系数据库的知识筛选,包括搜索和过滤,可能存在一些问题。例如,基于关键字的搜索和基于规则的过滤只能处理有限类型的问题,而且缺乏灵活性。在过去的几年里,现代深度学习方法通过自动将自然语言问题翻译成结构化查询语言来缓解这个问题。但是,如果将不同类型的数据(如表格、文本和异构图形数据)合并到具有许多表的关系数据库中,则结构化查询可能变得非常复杂,这对深度学习模型提出了新的挑战。本项目将通过设计一种基于非关系数据库的新范式来解决这些挑战,该数据库以更灵活的非表格形式存储数据。新的范式可以很容易地将推理整合到问题到查询的翻译中,使深度学习模型能够处理更复杂的问题,这将有利于许多特定领域的应用程序。该项目还将促进教学和指导活动,例如开发新课程和培训机器学习、自然语言处理、数据管理和健康信息学方面的下一代专家。项目成果和观察结果将向公众开放。该项目将为自然语言驱动的非关系数据库知识筛选开辟新的研究方向。尽管有许多知名的、高效的、可扩展的非关系数据库和搜索引擎,但很少有人致力于为它们开发自然语言查询方法并利用它们的潜力。该项目旨在通过为基于自然语言的搜索和查询设计新的底层框架来填补这一空白,包括非关系数据库中的数据整合、数据库和查询模板中的推理集成以及人在循环模型的开发和评估。两项主要研究活动将基于一个流行的搜索引擎ElasticSearch进行:(1)研究者将开发新的深度学习模型,将自然语言问题翻译成ElasticSearch查询,并创建新的数据集用于训练和评估模型。(2)提出统一的方法、标准的格式和可扩展的方式来创建知识“块”来存储多模态数据,并开发新的问题生成模型,从嵌套的知识中自动生成问题。该项目将产生各种结果,例如用于模型开发的数据、用于模型训练和推理的算法,以及用于创建训练数据的注释工具。这些产品将有利于数据管理和筛选,并支持医疗保健、生物信息学和科学研究方面的决策。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Wang其他文献
The clause structure of Malagasy : a minimalist approach
马达加斯加语的子句结构:极简主义方法
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Jun Zhou;Wei Du;Guo;Ping Wang;Yingmin Tao;L. Sun;Bo Peng;Ranran Dai;Wei Tang - 通讯作者:
Wei Tang
Particle scattering induced orbital angular momentum spectrum change of vector Bessel–Gaussian vortex beam
矢量贝塞尔-高斯涡旋光束的粒子散射诱导轨道角动量谱变化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5
- 作者:
Chenge Shi;Mingjian Cheng;Lixin Guo;Martin P. J. Lavery;Ping Wang;Songhua Liu;Renxian Li;Jiangting Li - 通讯作者:
Jiangting Li
Influence of Polygonal Wheels in High-speed Trains on Dynamic Performance of Turnout
- DOI:
10.3901/jme.2018.04.047 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ping Wang - 通讯作者:
Ping Wang
The Correlation between Traditional Ultrasound Features and the Expression of Estrogen Receptor, Progesterone Receptor, Human Epidermal Growth Factor Receptor-2, and Ki-67 in Breast Carcinoma
乳腺癌传统超声特征与雌激素受体、孕激素受体、人表皮生长因子受体-2、Ki-67表达的相关性
- DOI:
10.37015/audt.2018.180820 - 发表时间:
2018 - 期刊:
- 影响因子:0.9
- 作者:
Ping Wang;Junfan Li;Wensheng Yue;Wenyan Li;Yuqun Luo - 通讯作者:
Yuqun Luo
Late Cretaceous drainage reorganization of the Middle Yangtze River
长江中游晚白垩世水系重组
- DOI:
10.1130/l695.1 - 发表时间:
2018-06 - 期刊:
- 影响因子:2.4
- 作者:
Ping Wang;Hongbo Zheng;Shaofeng Liu;Greg Hoke - 通讯作者:
Greg Hoke
Ping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Wang', 18)}}的其他基金
Collaborative Research: Cultivating Tomorrow's Innovators Through Exploring Planetary Images with Artificial Intelligence
合作研究:通过人工智能探索行星图像培养明天的创新者
- 批准号:
2314155 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Excellence, Ethics, and Strategic Thinking
CyberCorps 服务奖学金:卓越、道德和战略思维
- 批准号:
2234554 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
RAPID: 2018 Hurricane Season: Sedimentological and Morphological Characteristics of Hurricane Michael Induced Storm Deposits in Apalachicola Bay
RAPID:2018 年飓风季节:迈克尔飓风引发的阿巴拉契科拉湾风暴沉积物的沉积学和形态特征
- 批准号:
1904055 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
BIGDATA: IA: Virtual Observatory of Innovation Communities and Ecosystems (VOICE): Advancing Big Data with Ecology Theory and Data Science
大数据:IA:创新社区和生态系统虚拟观测站(VOICE):利用生态理论和数据科学推进大数据
- 批准号:
1546404 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Investigation of the early growth response gene (Egr) 2 and 3 mediated regulatory programme in T cells
T 细胞中早期生长反应基因 (Egr) 2 和 3 介导的调控程序的研究
- 批准号:
MR/N00096X/1 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Collaborative Research: Bringing Problem Solving in the Field into the Classroom: Developing and Assessing Virtual Field Trips for Teaching Sedimentary and Introductory Geology
合作研究:将现场解决问题带入课堂:开发和评估沉积学和入门地质学教学的虚拟实地考察
- 批准号:
1044257 - 财政年份:2011
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
RAPID: Emergency Field Investigation of Oil-Beach Interaction along the Alabama and Florida Beaches Following the BP Deepwater Horizon Oil Spill
RAPID:英国石油公司深水地平线漏油事件后,对阿拉巴马州和佛罗里达州海滩沿线的油滩相互作用进行紧急现场调查
- 批准号:
1041868 - 财政年份:2010
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
TLS: Science & Technology Innovation Concept Knowledge-base (STICK): Monitoring, Understanding, and Advancing the (R)Evolution of Science & Technology Innovations
TLS:科学
- 批准号:
0915645 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
DHB: Scalable Computational Analysis of the Diffusion of Technological Concepts
DHB:技术概念扩散的可扩展计算分析
- 批准号:
0729459 - 财政年份:2007
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Study of Novel Interfacial Biocatalysis of Multienzyme Systems Self-Assembled at Organic-Aqueous Interfaces
职业:有机-水界面自组装多酶系统的新型界面生物催化研究
- 批准号:
0703999 - 财政年份:2006
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
- 批准号:
2412340 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
- 批准号:
2246067 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310262 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310261 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III Towards Fair Outlier Detection
协作研究:IIS-III 迈向公平的异常值检测
- 批准号:
2310482 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
- 批准号:
2310481 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Medium: Towards Inclusive Recommendation Systems with Stakeholder Alignment
III:中:迈向利益相关者联盟的包容性推荐系统
- 批准号:
2312794 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
III: Small: A New Machine Learning Paradigm Towards Effective yet Efficient Foundation Graph Learning Models
III:小型:一种新的机器学习范式,实现有效且高效的基础图学习模型
- 批准号:
2321504 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Towards Highly Accurate Map Services
III:小:迈向高精度地图服务
- 批准号:
2203553 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant