PIRE: Multi-Domain, Multi-Scale, Policy-Aware Digital Twin for Offshore Wind Energy Infrastructure

PIRE:海上风能基础设施的多领域、多规模、政策感知数字孪生

基本信息

  • 批准号:
    2230630
  • 负责人:
  • 金额:
    $ 149.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

For the US to achieve the offshore wind goals of 30 Gigawatts by 2030, approximately 2000 offshore wind turbines (OWTs) need to be installed in the coming years. Only 7 are currently operating in US waters. For comparison, close to 6000 foundations are operating in European waters. The size, expense, and importance of OWTs to mitigating climate change necessitates to consider them as civil infrastructures. Such infrastructures must be built to last for over 50 or even 100 years. However, a conception of OWTs as infrastructure has not caught up with their rapid growth. Most OWTs are typically designed for a 25-to-35-year service life. In a few decades, the industry will face a consequential decision-making challenge as to whether to decommission, rebuild, or retrofit these assets. This challenge is not limited to the US. It has global implications considering the global expansion of offshore wind energy. Here, the team develops a joint modeling framework for decision making about OWT safety, operation and maintenance, life extension and design. International collaboration is essential because the developers, designers, and operators for offshore wind energy farms are almost entirely from Europe. Leveraging the European experience from their international collaborators, the researchers use both quantitative and qualitative data collected directly from OWTs, the workers who service them, and the decision makers who enable their development. Their goal is to find solutions to improve the resilience of offshore wind turbines, notably while confronted to more frequent extreme weather events. By improving OWT service life, this project paves the way to efficiently develop the US clean-energy infrastructures. The project also provides support and training to 1 postdoctoral associate, and graduate and undergraduate students notably from underrepresented groups in science and engineering. More specifically, the team develops an extensible and customizable joint modeling framework for policy and safety aware digital twins. They use a physics-data-policy-safety co-modeling paradigm, integrated with the help of Agent Based Models. A digital twin is a computational model of an actual OWT (or systems of OWTs) that is maintained and updated based on measured data. The proposed framework is formulated and studied within the context of the Block Island Wind Farm in Rhode Island state waters, the Coastal Virginia Offshore Wind Pilot Project, in US federal waters, and the Levenmouth Demonstration Turbine in the United Kingdom. It enables short, medium, and long-term modeling, learning, and assessment of the offshore wind farms. It uses measured data and integrate with policy, labor, and safety aspects. The multi-domain, multi-scale nature of the renewables and related structural elements is modeled by a physics-based Bayesian Assimilation Framework. It is complemented by data-driven machine learning and transfer learning. The project includes national and international stakeholder engagement programs to facilitate a diverse and inclusive co-production of knowledge. The project has integral educational components including K-12 outreach, professional trainings, and development of graduate students within a transdisciplinary research environment to support the future workforce needed in the offshore wind industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了让美国在2030年前实现30吉瓦的海上风力发电目标,未来几年需要安装大约2000台海上风力涡轮机(OWTs)。目前只有7艘在美国水域作业。相比之下,近6000个基金会在欧洲水域运营。由于OWTs的规模、费用和对减缓气候变化的重要性,有必要将其视为民用基础设施。这样的基础设施必须能够持续使用50年甚至100年以上。然而,将OWTs作为基础设施的概念并没有跟上它们的快速增长。大多数OWTs的设计寿命通常为25至35年。几十年后,该行业将面临一个相应的决策挑战,即是否退役、重建或翻新这些资产。这一挑战并不局限于美国。考虑到海上风能的全球扩张,它具有全球影响。在这里,该团队开发了一个联合建模框架,用于OWT安全、运维、寿命延长和设计的决策。国际合作至关重要,因为海上风电场的开发商、设计者和运营者几乎完全来自欧洲。利用来自国际合作者的欧洲经验,研究人员使用直接从OWTs、为OWTs服务的工人和使其得以发展的决策者那里直接收集的定量和定性数据。他们的目标是找到解决方案,以提高海上风力涡轮机的弹性,特别是在面临更频繁的极端天气事件时。通过延长OWT的使用寿命,该项目为高效发展美国清洁能源基础设施铺平了道路。该项目还为1名博士后助理以及研究生和本科生提供支持和培训,这些学生主要来自科学和工程领域代表性不足的群体。更具体地说,该团队为具有政策和安全意识的数字双胞胎开发了一个可扩展和可定制的联合建模框架。它们使用物理-数据-策略-安全联合建模范例,并在基于代理的模型的帮助下集成。数字双胞胎是实际OWT(或OWT系统)的计算模型,基于测量数据进行维护和更新。拟议的框架是在罗德岛州水域的区块岛风力发电场、美国联邦水域的弗吉尼亚海岸离岸风力试点项目和英国的莱文茅斯示范涡轮机的背景下制定和研究的。它可以对海上风电场进行短期、中期和长期的建模、学习和评估。它使用测量数据,并与政策、劳动力和安全方面相结合。可再生能源和相关结构要素的多领域、多尺度性质由基于物理学的贝叶斯同化框架模拟。它与数据驱动的机器学习和迁移学习相辅相成。该项目包括国家和国际利益攸关方参与计划,以促进多样化和包容性的共同知识生产。该项目包含完整的教育部分,包括K-12外展、专业培训和跨学科研究环境中研究生的发展,以支持海上风电行业未来所需的劳动力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Saddle Point Problems for Strongly Concave-Convex Functions
System identification and finite element model updating of a 6 MW offshore wind turbine using vibrational response measurements
  • DOI:
    10.1016/j.renene.2023.119430
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Bridget Moynihan;Azin Mehrjoo;B. Moaveni;Ross McAdam;F. Rüdinger;Eric Hines
  • 通讯作者:
    Bridget Moynihan;Azin Mehrjoo;B. Moaveni;Ross McAdam;F. Rüdinger;Eric Hines
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Babak Moaveni其他文献

Modeling and experimentally-driven sensitivity analysis of wake-induced power loss in offshore wind farms: Insights from Block Island Wind Farm
海上风电场尾流诱导功率损失的建模与基于实验的敏感性分析:来自布洛克岛风电场的见解
  • DOI:
    10.1016/j.renene.2024.122126
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    9.100
  • 作者:
    Sina Shid-Moosavi;Fabrizio Di Cioccio;Rad Haghi;Eleonora Maria Tronci;Babak Moaveni;Sauro Liberatore;Eric Hines
  • 通讯作者:
    Eric Hines
Inverse modeling of wind turbine drivetrain from numerical data using Bayesian inference
  • DOI:
    10.1016/j.rser.2022.113007
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Valikhani;Vahid Jahangiri;Hamed Ebrahimian;Babak Moaveni;Sauro Liberatore;Eric Hines
  • 通讯作者:
    Eric Hines
One versus all: identifiability with a multi-hazard and multiclass building damage imagery dataset and a deep learning neural network
一对一:利用多危险和多类建筑损坏图像数据集和深度学习神经网络进行识别
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Olalekan R. Sodeinde;Magaly Koch;Babak Moaveni;L. Baise
  • 通讯作者:
    L. Baise
Hybrid surrogate input load estimation model in offshore wind turbines using transfer learning and multitask learning
基于迁移学习和多任务学习的海上风力涡轮机混合代理输入负荷估计模型
  • DOI:
    10.1016/j.renene.2025.123011
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.100
  • 作者:
    Azin Mehrjoo;Eleonora M. Tronci;Babak Moaveni;Eric Hines
  • 通讯作者:
    Eric Hines
Operational modal analysis, seismic vulnerability assessment and retrofit of a degraded RC bell tower
  • DOI:
    10.1007/s13349-024-00765-1
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Simone Castelli;Simone Labò;Andrea Belleri;Babak Moaveni
  • 通讯作者:
    Babak Moaveni

Babak Moaveni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Babak Moaveni', 18)}}的其他基金

An Adaptive System Identification Approach Using Mobile Sensors
使用移动传感器的自适应系统识别方法
  • 批准号:
    1903972
  • 财政年份:
    2019
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Nonlinear Structural Identification for Health Monitoring of Civil Structures
职业:土木结构健康监测的概率非线性结构识别
  • 批准号:
    1254338
  • 财政年份:
    2013
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
BRIGE: Continuous Structural Health Monitoring Framework for Bridge Structures
BRIGE:桥梁结构的连续结构健康监测框架
  • 批准号:
    1125624
  • 财政年份:
    2011
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Research Grant
AI For Understanding Multi-domain Point Clouds
用于理解多域点云的人工智能
  • 批准号:
    2897909
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Studentship
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Thermodynamics of Multi-Domain Power Networks: Principles for Optimization and Control with Applications to Turboelectric Systems
多域电力网络的热力学:优化和控制原理及其在涡轮发电系统中的应用
  • 批准号:
    2221726
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
Mechanism of nonvesicular lipid domain component transport and significance of multi-transport systems
非囊泡脂质结构域成分转运机制及多转运系统的意义
  • 批准号:
    23H02175
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Frameworks: Target and Observation Manager Systems for Multi-Messenger and Time Domain Science
框架:用于多信使和时域科学的目标和观测管理系统
  • 批准号:
    2209852
  • 财政年份:
    2022
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
A High-Speed Multi-beam Camera for Time-Domain Astrophysics
用于时域天体物理的高速多光束相机
  • 批准号:
    ST/X005011/1
  • 财政年份:
    2022
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Research Grant
Origin of fast radio bursts from multi-wavelength and multi-time domain
多波长和多时域快速无线电爆发的起源
  • 批准号:
    22K20366
  • 财政年份:
    2022
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Optimization of an at-home continuous multi-domain monitoring and assessment system to improve Alzheimer's and related disorders clinical trials
优化家用连续多域监测和评估系统,以改善阿尔茨海默氏症及相关疾病的临床试验
  • 批准号:
    10383237
  • 财政年份:
    2022
  • 资助金额:
    $ 149.81万
  • 项目类别:
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
  • 批准号:
    RGPIN-2021-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了