CHS: Medium: Data-Mediated Communication with Proximal Robots for Emergency Response

CHS:中:与近端机器人进行数据介导的通信以进行紧急响应

基本信息

  • 批准号:
    2233316
  • 负责人:
  • 金额:
    $ 119.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Robots may augment emergency response teams by collecting information in environments that may be dangerous or inaccessible for human responders, such as in wildfire fighting, search and rescue, or hurricane response. For example, robots might collect critical visual, mapping, and environmental data to inform responders of conditions ahead that could improve their awareness of the operational environment. These data would assist in planning and re-planning courses of action and enhance in-the-field decision making. However, response teams currently have little ability to directly access robot-collected information in the field, despite its value for rapidly responding to local conditions, because current systems typically route the data through a central command post. This project's goal is to design systems that support more direct access and analysis for first responders while not imposing additional distractions or operational risks through using faulty data. Through collaboration with several local response groups, the project team will develop better understandings of responders' needs and concerns around robot-collected data, algorithms and visualizations that meet those needs using augmented reality technologies, and systems that integrate well with responders' actual work practices. The project will also develop a series of demonstrations, outreach activities, and technology challenges based on the project goals aimed at increasing public interest in science, including among high school students and underrepresented groups in computer science. Overall, this research will develop fundamental knowledge in robotics and visualization, leading to new methods and tools that enable responders to take advantage of robot-collected data while in the field. In particular, this project will explore how see-through augmented reality head-mounted displays (ARHMDs) might offer an intuitive and powerful medium for in situ analysis of robot-collected data through developing an ARHMD system that allows emergency responders to interact with robot-collected information in the contexts of where, when, and how that data was obtained. The team will conduct empirical studies to guide the design of system components that allow responders to actively analyze available data through interactive visualization, passively view digital traces and "data drops" left by robots as they collect information about the environment, and query specific information such as camera feeds on-demand. The team will also develop novel algorithms for 3D scene reconstruction and simultaneous location and mapping that will be useful for a broad variety of applications. Overall, the project will contribute empirical knowledge of how different factors of ARHMD visualizations influence data interpretation, novel algorithms for estimating, correcting, and sharing maps between intermittently-networked agents in the field, and information regarding how data from collocated robots can mediate human-robot interactions, particularly within the context of emergency response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器人可以通过在人类响应者(例如在野火战斗,搜救和救援)或飓风响应中收集可能危险或无法接近的环境中收集信息来增加紧急响应小组。例如,机器人可能会收集关键的视觉,映射和环境数据,以告知响应者未来的条件,以提高他们对操作环境的认识。这些数据将有助于计划和重新规划行动方案并增强现场决策。但是,响应团队目前几乎没有能力直接访问现场的机器人收集信息,尽管它的价值可以快速响应当地条件,因为当前系统通常通过中央命令帖子将数据路由。该项目的目标是设计系统,该系统支持急救人员进行更多直接访问和分析,同时不会通过使用错误的数据施加其他干扰或操作风险。通过与几个本地响应小组的合作,项目团队将更好地理解响应者的需求以及围绕机器人收集的数据,算法和可视化的疑虑,这些数据,算法和可视化措施使用增强现实技术以及与响应者实际工作实践良好整合的系统满足了这些需求。该项目还将根据旨在增加对科学的公众兴趣的项目目标,在包括高中生和计算机科学领域的代表性不足的群体中,制定一系列示范,外展活动和技术挑战。总体而言,这项研究将开发机器人技术和可视化方面的基本知识,从而导致新的方法和工具,使响应者能够在现场时利用机器人收集的数据。特别是,该项目将探讨如何通过开发一个允许紧急响应者与何时,何时以及如何获得该数据的网络上的信息进行交互,从而为机器人收集的数据提供现场分析,以便如何为机器人收集的数据提供直观且有力的媒介,以对机器人收集的数据进行现场分析。该团队将进行实证研究,以指导系统组件的设计,这些系统组件使响应者可以通过交互式可视化积极分析可用数据,被动地查看数字痕迹和机器人收集有关环境信息的“数据删除”,以及查询特定信息(例如相机供稿)。该团队还将开发用于3D场景重建和同时位置和映射的新颖算法,这将对各种应用程序有用。总体而言,该项目将对ARHMD可视化的不同因素如何影响数据解释,新颖的算法来估算,纠正和共享该现场的算法之间的新算法,并提供经验知识基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Mixed Reality Supervision and Telepresence Interface for Outdoor Field Robotics
Virtual, Augmented, and Mixed Reality for Human-robot Interaction: A Survey and Virtual Design Element Taxonomy
  • DOI:
    10.1145/3597623
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    M. Walker;Thao Phung;Tathagata Chakraborti;T. Williams;D. Szafir
  • 通讯作者:
    M. Walker;Thao Phung;Tathagata Chakraborti;T. Williams;D. Szafir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Szafir其他文献

Daniel Szafir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Szafir', 18)}}的其他基金

WORKSHOP: HRI Pioneers at the 2023 ACM/IEEE International Conference on Human-Robot Interaction
研讨会:HRI 先锋出席 2023 年 ACM/IEEE 人机交互国际会议
  • 批准号:
    2316017
  • 财政年份:
    2023
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
FW-HTF-R/Collaborative Research: RoboChemistry: Human-Robot Collaboration for the Future of Organic Synthesis
FW-HTF-R/合作研究:RoboChemistry:人机协作打造有机合成的未来
  • 批准号:
    2222953
  • 财政年份:
    2022
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
CHS: Medium: Data-Mediated Communication with Proximal Robots for Emergency Response
CHS:中:与近端机器人进行数据介导的通信以进行紧急响应
  • 批准号:
    1764092
  • 财政年份:
    2018
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Continuing Grant
CRII: CHS: Leveraging Implicit Human Cues to Design Effective Behaviors for Collaborative Robots
CRII:CHS:利用隐式人类提示为协作机器人设计有效的行为
  • 批准号:
    1566612
  • 财政年份:
    2016
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
  • 批准号:
    2236644
  • 财政年份:
    2022
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
  • 批准号:
    1955721
  • 财政年份:
    2020
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
  • 批准号:
    1956021
  • 财政年份:
    2020
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
  • 批准号:
    1956087
  • 财政年份:
    2020
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Standard Grant
CHS:MEDIUM: Understanding Public Uses of Data and Dashboards
CHS:MEDIUM:了解数据和仪表板的公共用途
  • 批准号:
    1901367
  • 财政年份:
    2019
  • 资助金额:
    $ 119.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了