Chemical Nanomotors

化学纳米马达

基本信息

项目摘要

The aim of this project is develop a new class of microswimmers. Swimming at small length scales is challenging as at low Reynolds numbers the viscous drag is so dominant that any symmetric motion does not lead to propulsion (scallop theorem). Microorganisms have therefore evolved two main swimming strategies. Ciliated microswimmers execute a time asymmetric beat and bacteria rotate a chiral flagellum. Here we propose to build the first fully autonomous microswimmer (no external fields) that moves analogous to a bacterial cell. A new unique fabrication capability that we have developed permits the large scale (>100 billion nanocolloids/hour) growth of complex 3D shapes including inorganic nanohelices that can contain several materials, which in turn can be addressed via chemical functionalization. Our fabrication has a precision of 20 nm, and the size range is between 40 nm and 4 microns.In addition to the fabrication capabilities, we have access to and experience with the ATPase. During the hydrolysis of ATP the enzyme rotates. ATPase will be the rotary engine of the proposed microswimmer. Our enzyme is genetically modified so that on one side we will couple a body that functions as a counter-weight (e.g. a particle) and on the opposite end will couple a suitable flagellum that we fabricate with the aforementioned scheme. Several orthogonal coupling chemistries are employed to assemble this hybrid swimmer. SEM and TEM imaging, including in liquid, will be used to verify the construction of the swimmer. The use of fluorescent labels will allow us to use both fluorescence imaging as well as differential dynamic microscopy, which can be used for ensemble measurements. This project will allow us to build an artificial bio-hybrid swimmer that can operate in water. We can address interesting questions of low Reynolds number hydrodynamics as we can reduce the size to regimes where continuum hydrodynamics still holds, but where Brownian effects will become important. The dependence on the chemical fuel ATP serves as a control and permits studies of efficiency for different loads. In addition to swimming in 3D, we can also anchor the enzymes in large numbers on a surface. At one end the enzymes will be attached to the surface at the other end we can couple an inorganic nanostructure to the enzyme. This will allow us to study the collective behavior of an array of chemically-powered propellers. Finally, our fabrication scheme is so general that we can use it to grow large numbers of complex shaped colloids with more functionality and more complex shapes than what has been possible thus far and thus realize an array of new microswimmers that can be driven by chemical, thermal, diffusio-, or photophoretic means. These we will fabricate and make available to other groups within the SPP. Combined multi-functional and steerable micro- and nanoswimmers should be realizable with the unique nanotechnological capabilities at our disposal.
本项目的目的是开发一种新型的微型游泳者。在小长度尺度下游泳是具有挑战性的,因为在低雷诺数下,粘性阻力是如此占主导地位,以至于任何对称运动都不会导致推进(扇贝定理)。因此,微生物进化出两种主要的游泳策略。纤毛微泳者执行时间不对称节拍和细菌旋转手性鞭毛。在这里,我们建议建立第一个完全自主的microswimmer(没有外部场),移动类似于细菌细胞。我们开发的一种新的独特制造能力允许复杂3D形状的大规模(> 1000亿纳米胶体/小时)生长,包括可以包含多种材料的无机纳米螺旋,这反过来又可以通过化学功能化来解决。我们的制造精度为20 nm,尺寸范围为40 nm至4微米。除了制造能力外,我们还拥有ATP酶的使用权和经验。在ATP的水解过程中,酶旋转。ATP酶将是拟议中的微型游泳器的旋转发动机。我们的酶是经过基因改造的,因此在一端,我们将耦合一个起配重作用的主体(例如颗粒),而在另一端,我们将耦合一个我们用上述方案制造的合适的鞭毛。几个正交耦合化学组装这种混合游泳。SEM和TEM成像,包括在液体中,将用于验证游泳者的构造。荧光标记的使用将使我们能够使用荧光成像以及差分动态显微镜,这可以用于合奏测量。这个项目将使我们能够建造一个可以在水中运行的人工生物混合游泳者。我们可以解决低雷诺数流体力学的有趣问题,因为我们可以将尺寸减小到连续流体力学仍然成立的区域,但布朗效应将变得重要。对化学燃料ATP的依赖性作为控制,并允许研究不同负载的效率。除了在3D中游泳,我们还可以将大量的酶锚在表面上。在一端,酶将附着在表面上,在另一端,我们可以将无机纳米结构偶联到酶上。这将使我们能够研究一系列化学动力螺旋桨的集体行为。最后,我们的制造方案是如此普遍,以至于我们可以用它来生长大量复杂形状的胶体,这些胶体具有比迄今为止可能的更多的功能和更复杂的形状,从而实现一系列新的微泳者,这些微泳者可以通过化学、热、扩散或电泳手段来驱动。这些我们将制作并提供给SPP内的其他团体。结合多功能和可操纵的微型和纳米游泳者应该是可实现的独特的纳米技术能力在我们的处置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Börsch其他文献

Professor Dr. Michael Börsch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Börsch', 18)}}的其他基金

Monitoring the rotary mechanism of a single FoF1-ATP synthase in the ABELtrap
监测 ABELtrap 中单个 FoF1-ATP 合酶的旋转机制
  • 批准号:
    230720104
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kontrolle des Rotationsmechanismus einer einzelnen FoF1-ATP synthase in freitragenden Lipiddoppelschichten
自支撑脂质双层中单个 FoF1-ATP 合酶旋转机制的控制
  • 批准号:
    196663069
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Echtzeitbeobachtung des Doppelmotors in einer einzelnen F0F1-ATP Synthase: Abbilden von Rotor-Elastizität und Stator-Nachgiebigkeit anhand von Dreifarben-FRET
实时观察单个 F0F1-ATP 合酶中的双电机:使用三色 FRET 绘制转子弹性和定子顺应性
  • 批准号:
    27748066
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Die gekoppelte Rotation der beiden Motoren einer einzelnen F0F1-ATP Synthase: Elastische Energiespeicherung während ATP Synthese und Hydrolyse
单个 F0F1-ATP 合酶的两个电机的耦合旋转:ATP 合成和水解过程中的弹性能量存储
  • 批准号:
    5451896
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology
膜光药理学分子纳米马达的计算机研究和优化
  • 批准号:
    10629113
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Highly Efficient Nanomotors for Autonomous Cell Recognition and Isolation
用于自主细胞识别和分离的高效纳米电机
  • 批准号:
    DP210100422
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Autonomous plasmonic nanomotors responding to surface molecular adsorption
响应表面分子吸附的自主等离子体纳米马达
  • 批准号:
    19H02533
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic Chemically-powered Nanomotors: A Computational and Theoretical Study of Nanomotor Self-propulsion
合成化学动力纳米电机:纳米电机自推进的计算和理论研究
  • 批准号:
    476043-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Synthetic Chemically-powered Nanomotors: A Computational and Theoretical Study of Nanomotor Self-propulsion
合成化学动力纳米电机:纳米电机自推进的计算和理论研究
  • 批准号:
    476043-2015
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Synthetic Nanomotors
合成纳米电机
  • 批准号:
    483198-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Synthetic Chemically-powered Nanomotors: A Computational and Theoretical Study of Nanomotor Self-propulsion
合成化学动力纳米电机:纳米电机自推进的计算和理论研究
  • 批准号:
    476043-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Kinetics of Autonomous Catalytic Nanomotors in Confined and Crowded Environments
合作研究:密闭和拥挤环境中自主催化纳米电机的动力学
  • 批准号:
    1464146
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development and applications of self-propelled micro/nanomotors that have high controllability
高可控自驱动微纳米电机的开发与应用
  • 批准号:
    26820341
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nanomotors for thrombolytic therapy after stroke
用于中风后溶栓治疗的纳米马达
  • 批准号:
    8700688
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了