CAREER: Taming the Terahertz for 6G Wireless Backhaul

职业生涯:驯服太赫兹以实现 6G 无线回程

基本信息

  • 批准号:
    2238132
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

An essential element of next-generation 6G wireless communications will be wireless backhaul. Backhaul is the network link that moves massive data streams at high speed between two points, supporting large subnetworks of mobile and fixed-location users. Normally optical fibers carry backhaul data, but fiber deployment is not always viable; wireless backhaul provides the high-speed alternative and solution. 6G will be the first generation of widely deployed wireless communication that has data rates comparable to fiber optics, heralding important benefits to our nation and society. Rural and remote populations may especially benefit from wireless backhaul, since it supports broadband connectivity (helping to close the digital divide) where fiber deployment is cost prohibitive. Wireless backhaul would also enable temporary high-speed networks critical to operations in mobile military units, natural disaster recoveries, or seasonal endeavors, such as smart and connected farming. Even the fiber-dominated networks in urban centers may economically and logistically benefit from the high flexibility and relatively low installation cost of wireless backhaul segments. Further, 6G wireless backhaul will strategically leverage the long-underutilized terahertz spectrum between 0.1-10 THz. Realizing ubiquitous 6G networks will require much new research, but terahertz backhaul is an important first step. The proposed work will utilize a combination of unique experimental measurements, theoretical models, and new device designs to fill knowledge gaps in the understanding of terahertz backhaul performance under real-world conditions. The knowledge gained will establish the critical foundations upon which future 6G systems can be intelligently engineered and optimized. Moreover, this work will train a new generation of students, from high school to graduate levels, inspired to work in electrical engineering and capable of advancing the highly complex wireless communications and sensing technologies in the future.To date, experimental demonstrations of terahertz communication are still very rare, leaving numerous scientific gaps in the holistic understanding of the impact of the atmosphere, antenna pointing, weather, and turbulence, especially when employing the backhaul requirements of ultrawide bandwidth and long distance. This dearth of measurements further leads to an inability to properly validate comprehensive theoretical models used in system engineering. The project goals and scope involve three thrusts: 1. to measure real terahertz backhaul links and enable gap issues to be studied and properly understood; 2. to use experimental measurements as the validation standard upon which theoretical channel models can be corrected and made more comprehensive; 3. to develop multi-functional reflectarrays, which are devices that can actively correct – in situ – terahertz communication problems such as antenna pointing, turbulence, and beam distortion. The measurement method will rely on a unique NSF-funded suite of terahertz systems that are purposely built to enable sensitive, long-distance, ultrawide bandwidth operations, both indoors and outdoors. The theoretical modeling will be extended to account for backhaul-unique properties, such as ultrawide bandwidth, and to unify the various physical mechanisms into a single comprehensive tool by which backhaul system behavior can be predicted in any practical circumstance. Reflectarrays will be designed by advancing artificial electromagnetic material concepts for backhaul specific purposes. These efforts will enhance terahertz wireless communication knowledge, improve theoretical models, and invent multi-functional devices that improve the power efficiency, speed, versatility, and reliability of future 6G wireless systems.This project is jointly funded by the Communications, Circuits and Sensing Systems (CCSS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代6G无线通信的基本要素将是无线回程。 Backhaul是网络链接,它以两个点之间的高速移动大量数据流,从而支持移动和固定位置用户的大型子网。通常,光纤携带回程数据,但纤维部署并不总是可行的。无线回程提供了高速替代方案和解决方案。 6G将是一代广泛部署的无线通信的第一代,其数据速率可与光纤相媲美,为我们的国家和社会带来重要的好处。农村和远程人口可能特别受益于无线回程,因为它支持禁止纤维部署成本的宽带连接(有助于关闭数字鸿沟)。无线回程还将使临时高速网络对移动军事部队的运营,自然灾害恢复或季节性努力(例如智能和互联农业)至关重要。即使是城市中心的纤维主导网络也可能在经济和逻辑上受益于无线回程细分市场的高灵活性和相对较低的安装成本。此外,6G无线回程将在战略上利用终止的Terahertz光谱在0.1-10 THz之间。意识到无处不在的6G网络将需要大量的新研究,但是Terahertz Backhaul是重要的第一步。拟议的工作将利用独特的实验测量,理论模型和新设备设计的组合,以填补知识差距,以理解在现实世界中的Terahertz Backhaul绩效。获得的知识将确定可以智能地设计和优化未来6G系统的关键基础。 Moreover, this work will tr​​ain a new generation of students, from high school to graduate levels, inspired to work in electrical engineering and capable of advancing The highly complex wireless communications and sensing technologies in the future.To date, experimental demonstrations of terahertz communication are still very rare, leaving numerous scientific gaps in the holistic understanding of the impact of the atmosphere, antenna pointing, weather, and turbulence, especially when employing the backhaul requirements of ultrawide带宽和长距离。测量的死亡进一步导致无法正确验证系统工程中使用的综合理论模型。项目目标和范围涉及三个推力:1。衡量真正的Terahertz Backhaul链接并使差距问题得以研究并正确理解; 2。使用实验测量作为验证标准,可以纠正理论通道模型并更全面; 3。开发多功能反射式阵列,它们是可以主动纠正的设备 - 原位 - terahertz通信问题,例如天线指向,湍流和光束失真。该测量方法将依赖于独特的NSF资助的Terahertz系统套件,该系统是故意构建的,以启用室内和室外的敏感,长距离,超速带宽操作。理论建模将扩展以说明诸如超大带宽等回程唯一特性,并将各种物理机制统一成一个单一的综合工具,通过该工具可以在任何实际圈子中预测回缩式系统行为。反射式阵列将通过推进人工电磁材料概念来设计用于回程特定目的。这些努力将增强Terahertz无线沟通知识,改善理论模型,并发明多功能设备,以提高未来6G无线系统的功率效率,速度,多功能性和可靠性。该项目由通信,电路和传感系统(CCSS)计划和既定的启发型统计化的研究(Epscsed evers evers evers and ant te and ant te and toss)共同资助。通过使用基金会的知识分子和更广泛影响的评论标准来通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John O'Hara其他文献

Photoinduced cross-linking of formulation buffer amino acids to monoclonal antibodies
  • DOI:
    10.1016/j.ejpb.2021.01.011
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Powell;Michael J. Knight;Amanda Wood;John O'Hara;William Burkitt
  • 通讯作者:
    William Burkitt
Efficacy of using an air arthrogram for EUA and injection of the hip joint in adults
  • DOI:
    10.1016/j.jor.2014.06.011
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Shahid;Srinivasan Shyamsundar;Navi Bali;Callum McBryde;John O'Hara;Edward Bache
  • 通讯作者:
    Edward Bache
Marching to the Beet: The effect of dietary nitrate supplementation on high altitude exercise performance and adaptation during a military trekking expedition
  • DOI:
    10.1016/j.niox.2021.05.002
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anna R. Marshall;Joanna E. Rimmer;Nishma Shah;Kyo Bye;Courtney Kipps;David R. Woods;John O'Hara;Christopher J. Boos;Matthew Barlow
  • 通讯作者:
    Matthew Barlow

John O'Hara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John O'Hara', 18)}}的其他基金

SCC-PG: Revitalizing Rural - Equipping Rural Communities with Technology Literacy for Seizing Productivity
SCC-PG:乡村振兴——为农村社区提供科技素养,夺取生产力
  • 批准号:
    2125393
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Wideband Continuous-Wave Characterization Platform
MRI:获取宽带连续波表征平台
  • 批准号:
    2018110
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

若干几何方程研究
  • 批准号:
    11071208
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目
二级频标的驯服保持技术
  • 批准号:
    10978017
  • 批准年份:
    2009
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Taming of the Streptomycete: Understanding the rules of domestication in antibiotic-producing bacteria
驯服链霉菌:了解产生抗生素的细菌的驯化规则
  • 批准号:
    BB/Y00082X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Taming Networks in the Wild: A Safety-Centric Network Learning Framework
职业:驯服野外网络:以安全为中心的网络学习框架
  • 批准号:
    2340346
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Taming Wireless Devices Cross-Layer Errors with Assistive Networked Edges
职业:利用辅助网络边缘解决无线设备跨层错误
  • 批准号:
    2312738
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了