CAREER: Deploying Transferable Medical Imaging Diagnosis System in Diverse Environments
职业:在不同环境中部署可转移的医学影像诊断系统
基本信息
- 批准号:2239537
- 负责人:
- 金额:$ 57.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Medical imaging, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), chest X-ray, and retinal imaging, are valuable tools to assist in diagnosis. Medical imaging analysis has been significantly advanced using deep learning models. The knowledge extracted from large amounts of medical data can be used to make predictions for new patients. It has been demonstrated in many cases that the performances of machine learning models are comparable to board-certified radiologists or other professional experts, indicating the potential successful integration of those models in clinical applications. For example, imagine a patient notices a painless rash on their skin. If they could take a photo with a cell phone and receive a quick assessment comparable to experienced dermatologists, life-threatening diseases would be intervened or avoided early. However, the current success of deep learning is heavily dependent on large and high-quality labeled datasets. Such nearly perfect environments are only available in ideal lab environments because of the population shift, device differences, or rare diseases in real clinical applications. This project plans to focus on those specific challenges of non-ideal medical imaging diagnosis environments to advance the knowledge of building transferrable deep learning models and enhance national health by providing better tools for medical imaging diagnosis. Furthermore, this research will support the cross-disciplinary development of a diverse cohort of Ph.D. and undergraduate students and outreach activities to diverse communities.Technically, this project will investigate and build transferable medical imaging diagnosis systems in diverse environments. The project proceeds with one overarching theme of leveraging the understudied geometric properties of deep neural networks to address three universal barriers when deploying medical imaging systems in various environments. Specifically, there are challenges to transferring models to novel classes, where there are not enough training samples, and novel domains, where the deploying environments change, and more importantly, preserving the previous knowledge in the model. If successful, the proposed research is expected to advance the understanding of building transferring deep learning models by leveraging a novel geometric interpretation of deep neural networks partitioning the input and feature space into generalized Voronoi diagrams. The driving applications of the proposed techniques are the prediction of long-tailed disease patterns on chest X-rays and ensuring consistent screening services for glaucoma in underserved communities. In addition, the proposed methods have the potential to be extended to similar scenarios with diverse deployment environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医学成像,如计算机断层扫描(CT),磁共振成像(MRI),胸部X射线和视网膜成像,是有价值的工具,以帮助诊断。使用深度学习模型,医学成像分析得到了显著的进步。从大量医疗数据中提取的知识可用于对新患者进行预测。在许多情况下,已经证明机器学习模型的性能与委员会认证的放射科医生或其他专业专家相当,这表明这些模型在临床应用中的潜在成功集成。例如,假设一个病人注意到他们皮肤上的无痛皮疹。如果他们能用手机拍下照片,并接受与经验丰富的皮肤科医生相当的快速评估,那么危及生命的疾病将得到早期干预或避免。然而,目前深度学习的成功在很大程度上依赖于大型和高质量的标记数据集。这种近乎完美的环境仅在理想的实验室环境中可用,因为在真实的临床应用中存在人口变化、设备差异或罕见疾病。该项目计划专注于非理想医学成像诊断环境的特定挑战,以推进构建可移植深度学习模型的知识,并通过提供更好的医学成像诊断工具来增强国民健康。此外,这项研究将支持跨学科的发展,一个不同的队列博士。在技术上,这个项目将研究和建立在不同环境中可转移的医学成像诊断系统。该项目的一个首要主题是利用深度神经网络的未充分研究的几何特性,以解决在各种环境中部署医学成像系统时的三个普遍障碍。具体来说,将模型转移到新的类和新的领域是一个挑战,在新的类中没有足够的训练样本,在新的领域中部署环境会发生变化,更重要的是,要保留模型中以前的知识。如果成功的话,这项研究有望通过利用深度神经网络的新几何解释将输入和特征空间划分为广义Voronoi图来促进对构建迁移深度学习模型的理解。所提出的技术的驱动应用是预测胸部X光片上的长尾疾病模式,并确保在服务不足的社区提供一致的青光眼筛查服务。此外,所提出的方法有可能被扩展到类似的情况下,不同的部署环境。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingchen Gao其他文献
Indoor Thermal Environment of Thin Membrane Structure Buildings: A Review
- DOI:
https://doi.org/10.1016/j.enbuild.2020.110704 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Guoji Tian;Yuesheng Fan;Mingchen Gao;Huan Wang;Huifan Zheng;Jie Liu;Changzhou Liu - 通讯作者:
Changzhou Liu
Experimental Study on Indoor Thermal Environment of Industrial Building Spaces Enclosed by Fabric Membranes
- DOI:
10.1080/23744731.2020. 1834298 - 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
Guoji Tian;Yuesheng Fan;Huan Wang;Huifan Zheng;Mingchen Gao;Jie Liu;Changzhou Liu - 通讯作者:
Changzhou Liu
Sports on the Curative Effect of Breast Cancer Drug-Loaded Nanoparticle Drug Delivery System
- DOI:
10.38007/ijst.2022.030405 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Mingchen Gao - 通讯作者:
Mingchen Gao
3D Anatomical Shape Atlas Construction Using Mesh Quality Preserved Deformable Models
使用网格质量保留可变形模型构建 3D 解剖形状图集
- DOI:
10.1007/978-3-642-33463-4_2 - 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Xinyi Cui;Shaoting Zhang;Yiqiang Zhan;Mingchen Gao;Junzhou Huang;Dimitris N. Metaxas - 通讯作者:
Dimitris N. Metaxas
Preparation of magnesium-modified steel slag and its adsorption performance for simultaneous removal of nitrogen and phosphorus from water
镁改性钢渣的制备及其对水中氮磷同时去除的吸附性能
- DOI:
10.1016/j.colsurfa.2024.135068 - 发表时间:
2024-12-05 - 期刊:
- 影响因子:5.400
- 作者:
Chunhong Shi;Mingchen Gao;Xuyue Huang;Xiaochen Wang;Jiacheng Jiang;Yuqi Zhang - 通讯作者:
Yuqi Zhang
Mingchen Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多感知及实虚融合的软机器人物理
仿真部署策略研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
AI模型训练与部署协同优化关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向动态异构车联网的低时延高可靠大模型部署与推理优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于智能网联系统的RSU部署与控制技术
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
灾后动态应急响应驱动的无人机集群异构网络部署优化
- 批准号:JCZRYB202500611
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向无训练压缩的深度学习模型轻量化部署方法研究
- 批准号:QN25F030023
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多组学数据的阿尔茨海默病早期诊
断模型多中心部署方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向多领域多任务的大模型高效部署关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向高速运载装备的时间敏感网络部署与优化
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
现代农业温室大棚传感器协同感知下的优化部署方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
官学協働による根拠に基づいた健康寿命の格差縮小施策の立案:部署横断型データの解析
通过政府与学术界的合作规划循证措施,减少健康预期寿命的差异:跨部门数据分析
- 批准号:
24K20242 - 财政年份:2024
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Deploying Intracortical Electrode Arrays to Record and Stimulate in a Tissue Volume
部署皮质内电极阵列以在组织体积中进行记录和刺激
- 批准号:
10636123 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Deploying a co-creative AI tool to accelerate high-growth companies
部署共同创意的人工智能工具来加速公司的高增长
- 批准号:
10080244 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Collaborative R&D
CRII: CNS: System for Deploying Ultra Low-Latency Machine Learning Applications on Programmable Networks
CRII:CNS:在可编程网络上部署超低延迟机器学习应用程序的系统
- 批准号:
2245352 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
deploying Reconfigurable Intelligent Surfaces for Interference Reduction
部署可重构智能表面以减少干扰
- 批准号:
EP/Y023374/1 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Fellowship
SBIR Phase I: A Soft, Tip-Growing, Self-Deploying Endotracheal Tube that Enables Visualization-Free Intubation
SBIR 第一阶段:一种柔软、尖端生长、自展开的气管插管,可实现无可视化插管
- 批准号:
2305627 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Development of the precision of b-jet property measurements with neural network and precise measurement of Higgs boson deploying the developed b-jet analysis
利用神经网络开发精确的 b 射流特性测量,并利用所开发的 b 射流分析精确测量希格斯玻色子
- 批准号:
23KJ0400 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ARTS: Deploying integrative systematics to untangle Lucidota, the Gordian knot of Neotropical firefly taxonomy.
艺术:运用综合系统学来解开新热带萤火虫分类学的棘手难题 Lucidota。
- 批准号:
2323041 - 财政年份:2023
- 资助金额:
$ 57.85万 - 项目类别:
Standard Grant
Designing and deploying a national registry to reduce disparity in access to stroke treatment and optimise time to treatment
设计和部署国家登记处,以减少获得中风治疗的差距并优化治疗时间
- 批准号:
580440-2022 - 财政年份:2022
- 资助金额:
$ 57.85万 - 项目类别:
Alliance Grants