CAREER: Unveil the Electrical Double Layer Structure in Battery Electrolyte Systems

职业:揭开电池电解质系统中的双电层结构

基本信息

  • 批准号:
    2239690
  • 负责人:
  • 金额:
    $ 59.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Energy storage is a key technology to the Nation’s economy, safety, and commitment to mitigate climate change. It has been increasingly important with the expanded widespread demand among most industries, spanning from large-scale electrical grid storage to electric vehicles and consumer electronics. While the innovation of lithium-ion batteries (LIB) has revolutionized daily life, the industry is hitting a major obstacle to keep pace with increasing demand of customers due to the lack of breakthrough in fundamentals of battery technology. The electrical double layer (EDL) is the interfacial layer at the electrode/electrolyte boundary. It governs the electron transfer, ion migration, and solvent molecular adsorption/desorption processes. In battery applications, EDL significantly impacts performance like cyclability, power rate, capacity retention, and safety. However, the fundamental knowledge of EDL in battery electrolytes is still lacking. This project aims to unveil the properties and structures of the EDL in LIB electrolyte systems, determine how these properties impact battery performance, and thus guide the development of safer, more efficient, powerful, and reliable battery systems. Moreover, this program will serve as an education vehicle to 1) build a strong and sustainable pipeline that supplies high quality battery experts to academia and industry and 2) create an inclusive and equitable battery research and education environment for students and scholars with diverse backgrounds.The goal of this CAREER project is to develop a novel in-situ characterization platform to directly probe the potential dependent properties and structure of EDL in typical LIB electrolytes (high concentration and nonaqueous). The objective of this work is to 1) characterize EDL properties by electrocapillarity with static mercury electrode, 2) resolve the EDL structure by varied angle Attenuated Total Reflection-Fourier Transform infrared (ATR-FTIR), and 3) bridge the EDL properties to electrochemical behavior of battery electrolytes. This interfacial characterization platform will enable the characterization of a series of interfacial and EDL properties in LIB electrolytes, including interfacial free energy, surface excess of ions, Potential of Zero Charge (PZC), surface charge density, and double layer capacitance. The knowledge derived from this project will accelerate the design optimization of electrolyte, shed light on interfacial modification of electrode, and advance the fundamental knowledge of solid/liquid interface. The characterization approaches developed in this project are transformative in more battery electrolyte systems beyond LIB electrolytes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源储存是国家经济、安全和减缓气候变化承诺的关键技术。随着从大规模电网存储到电动汽车和消费电子产品等大多数行业需求的扩大,它变得越来越重要。虽然锂离子电池(LIB)的革新给人们的日常生活带来了革命性的变化,但由于电池基础技术的缺乏突破,该行业在满足日益增长的客户需求方面遇到了重大障碍。双电层(EDL)是电极/电解质边界处的界面层。它控制着电子转移、离子迁移和溶剂分子吸附/解吸过程。在电池应用中,EDL显著影响诸如可循环性、功率率、容量保持和安全性等性能。然而,关于电池电解质中EDL的基础知识仍然缺乏。该项目旨在揭示锂离子电池电解质系统中EDL的特性和结构,确定这些特性如何影响电池性能,从而指导开发更安全、更高效、更强大、更可靠的电池系统。此外,该项目将作为一个教育工具,1)建立一个强大和可持续的管道,为学术界和工业界提供高质量的电池专家;2)为不同背景的学生和学者创造一个包容和公平的电池研究和教育环境。CAREER项目的目标是开发一种新的原位表征平台,直接探测典型LIB电解质(高浓度和非水)中EDL的潜在依赖性质和结构。本工作的目的是:1)利用静态汞电极的电毛细特性来表征EDL的性质;2)利用变角度衰减全反射-傅里叶变换红外(ATR-FTIR)来解析EDL的结构;3)将EDL的性质与电池电解质的电化学行为联系起来。该界面表征平台将能够表征LIB电解质的一系列界面和EDL特性,包括界面自由能、表面离子过剩、零电荷电位(PZC)、表面电荷密度和双层电容。该项目所获得的知识将加速电解质的设计优化,为电极的界面修饰提供线索,并推进固体/液体界面的基础知识。该项目开发的表征方法在LIB电解质以外的更多电池电解质系统中具有变革性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feifei Shi其他文献

A comprehensive review of sulfated fucan from sea cucumber: Antecedent and prospect
海参硫酸岩藻聚糖的综合综述:前因与展望
  • DOI:
    10.1016/j.carbpol.2024.122345
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    12.500
  • 作者:
    Guangning Chen;Long Yu;Feifei Shi;Jingjing Shen;Yuying Zhang;Guanchen Liu;Xuanwei Mei;Xinyu Li;Xiaoqi Xu;Changhu Xue;Yaoguang Chang
  • 通讯作者:
    Yaoguang Chang
Cross-section curvature effect in plasmonic ring lasers
等离子体环形激光器中的横截面曲率效应
Cross-section Curvature Effect in Hybrid Plasmonic Waveguides for Low-loss Propagation
用于低损耗传播的混合等离子体波导中的横截面曲率效应
  • DOI:
    10.1364/fio.2013.fth4d.4
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feifei Shi;Xudong Liu;Zhaoyu Zhang
  • 通讯作者:
    Zhaoyu Zhang
Unravelling the enhancement of myofibrillar protein gel properties induced by marine phospholipids: A structure, water state and intermolecular interactions study
解析海洋磷脂诱导的肌原纤维蛋白凝胶特性的增强:一项结构、水状态和分子间相互作用的研究
  • DOI:
    10.1016/j.lwt.2025.117681
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Boruo Yang;Jin Liu;Mei Lan;Rongbin Zhong;Feifei Shi;Min Zhang;Peng Liang
  • 通讯作者:
    Peng Liang
Electrochemical stability and corrosion behavior of Ni-Cr alloy in molten LiCl-KCl salt
镍铬合金在熔融氯化锂-氯化钾盐中的电化学稳定性和腐蚀行为
  • DOI:
    10.1016/j.electacta.2025.146507
  • 发表时间:
    2025-08-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Peyman Asghari-Rad;Nathan D. Smith;Seung-Wook Kim;Feifei Shi;Hojong Kim
  • 通讯作者:
    Hojong Kim

Feifei Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
  • 批准号:
    2906887
  • 财政年份:
    2024
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Studentship
Comparative and functional genomics to unveil liver fluke sexual development.
比较和功能基因组学揭示肝吸虫的性发育。
  • 批准号:
    2884096
  • 财政年份:
    2023
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Studentship
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
  • 批准号:
    10445464
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
A mass spectrometry approach to unveil cytoplasmic bacteria interactomes
揭示细胞质细菌相互作用组的质谱方法
  • 批准号:
    NE/X006638/1
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Research Grant
Functional genomics to unveil the early intra-mammalian development of schistosomes
功能基因组学揭示血吸虫的早期哺乳动物内发育
  • 批准号:
    MR/W013568/1
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Fellowship
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
  • 批准号:
    10681351
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
Odor trail tracking: a new paradigm to unveil algorithms and neural circuits underlying active sensation and continuous decision making
气味踪迹追踪:揭示主动感觉和持续决策背后的算法和神经回路的新范例
  • 批准号:
    10524245
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
  • 批准号:
    22K03579
  • 财政年份:
    2022
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unveil the regulatory functions of cord blood in the therapeutic mechanism of cord blood transfusion against cerebral palsy
揭示脐带血在脑瘫输注治疗机制中的调节功能
  • 批准号:
    21K07846
  • 财政年份:
    2021
  • 资助金额:
    $ 59.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
African trypanosome parasites: a new tool to unveil potential immunological strategies to target CLL
非洲锥虫寄生虫:揭示针对 CLL 的潜在免疫策略的新工具
  • 批准号:
    10188324
  • 财政年份:
    2021
  • 资助金额:
    $ 59.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了