Multimodal Disaster Impact Assessment Models for Enhanced Resilience

增强抵御能力的多模式灾害影响评估模型

基本信息

  • 批准号:
    2242767
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

Immediately after a major hazard event (e.g., wildfire, earthquake, flood), a prompt assessment of the geographic distribution and severity of infrastructure damage is vital to the success of the emergency response and early recovery planning. This situational awareness is an important part of the decision-making processes that are implemented by facility owners, users, emergency responders and local and state officials. Conversely, a general lack of knowledge about the impacted state of the built environment can lead to a disorganized public response and slower recovery. While a comprehensive assessment of the extent and distribution of infrastructure damage can be obtained from in-person inspections conducted by building professionals, depending on the scale of the event, this can be a lengthy, resource intensive process. This Disaster Resilience Research Grants (DRRG) project will address this challenge by utilizing principles from artificial intelligence (AI) to develop near real-time infrastructure damage prediction models that can process and utilize different types of data and information (e.g., images, text, tabular data). By advancing our ability to effectively integrate disparate information sources, this project aims to transform the way that physical damage to infrastructure is estimated in the aftermath of a major disaster event, thereby enhancing the emergency response and recovery planning phases that follow. The research will provide training for doctoral and masters students and an opportunity to teach undergraduates from different backgrounds how science and engineering coupled with AI technologies can be used to improve community response to extreme events.Fundamental concepts and methodological advancements in multimodal learning will be used to transform and enhance infrastructure damage prediction models for use in the immediate post-event environment. The state-of-the-art in image-based damage assessment will be advanced along two dimensions: (1) developing Vision Transformer-based methods and (2) establishing a self-supervised learning methodology for training the models using large collections of unlabeled data. A new knowledge base will be established around the broad area of multimodal data fusion for infrastructure damage prediction models. Specific questions regarding unified representation, translation across and alignment between modalities and data fusion will be answered. A new type of hazard-agnostic infrastructure damage prediction model will also emerge from this research. Such a model will have the ability to receive an integrated representation of one or more types of input modalities (i.e., image, text, and engineering/tabular data) and produce, as output, an infrastructure damage level that is agnostic to the type of causal event (e.g., earthquake or hurricane). Using a comprehensive data set from multiple natural hazard events (hurricane and earthquake), the project will include experiments to shed new light on the ability of both hazard-specific and hazard-agnostic multimodal models to enhance early-stage infrastructure damage assessments for increased situational awareness and enhanced resilience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
重大危险事件发生后(例如,野火、地震、洪水),迅速评估基础设施破坏的地理分布和严重程度对于应急反应和早期恢复规划的成功至关重要。这种态势感知是设施所有者、用户、应急人员以及地方和州官员实施的决策过程的重要组成部分。相反,对建筑环境的受影响状况普遍缺乏了解,可能导致公众反应混乱,恢复缓慢。虽然可以通过建筑专业人员进行的现场检查对基础设施损坏的程度和分布情况进行全面评估,但这取决于事件的规模,这可能是一个漫长的资源密集型过程。这个灾难恢复研究赠款(DRRG)项目将通过利用人工智能(AI)的原理来解决这一挑战,以开发近实时的基础设施损坏预测模型,该模型可以处理和利用不同类型的数据和信息(例如,图像、文本、表格数据)。通过提高我们有效整合不同信息来源的能力,该项目旨在改变在重大灾害事件发生后估计基础设施实际损失的方式,从而加强随后的应急反应和恢复规划阶段。该研究将为博士生和硕士生提供培训,并为来自不同背景的本科生提供机会,让他们了解如何将科学和工程技术与人工智能技术相结合,以改善社区对极端事件的反应。多模式学习的基本概念和方法进步将用于改造和增强基础设施损坏预测模型,以用于事件发生后的即时环境。基于图像的损伤评估的最新技术将沿着沿着两个维度推进:(1)开发基于视觉变换器的方法和(2)建立一种自监督学习方法,用于使用大量未标记数据来训练模型。将围绕基础设施损坏预测模型的多模式数据融合这一广泛领域建立一个新的知识库。将回答有关统一表示,跨模态和数据融合之间的转换和对齐的具体问题。一种新型的灾害不可知的基础设施损坏预测模型也将从这项研究中出现。这样的模型将具有接收一种或多种类型的输入模态(即,图像、文本和工程/表格数据),并产生与因果事件的类型无关的基础设施损坏水平(例如,地震或飓风)。使用来自多个自然灾害事件的综合数据集(飓风和地震),该项目将包括实验,以揭示新的光的能力,具体的灾害和灾害不可知的多式联运模式,以提高早期-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Burton其他文献

Quantifying the effect of probability model misspecification in seismic collapse risk assessment
  • DOI:
    10.1016/j.strusafe.2022.102185
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laxman Dahal;Henry Burton;Samuel Onyambu
  • 通讯作者:
    Samuel Onyambu
Out-of-plane (flatwise) behavior of through-tenon connections using the integral mechanical attachment technique
  • DOI:
    10.1016/j.conbuildmat.2020.120001
  • 发表时间:
    2020-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Aryan Rezaei Rad;Henry Burton;Yves Weinand
  • 通讯作者:
    Yves Weinand
Quantifying the realized and unrealized benefits of seismic interventions using causal inference
  • DOI:
    10.1007/s11069-025-07531-6
  • 发表时间:
    2025-07-28
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Henry Burton;Sebastian Galicia Madero;Chenhao Wu;Rashid Shams;Chukwuebuka Nweke
  • 通讯作者:
    Chukwuebuka Nweke
Auto-WoodSDA: A scalable end-to-end automation framework to perform probabilistic seismic risk and recovery assessment of new residential woodframe buildings
自动木框架结构设计分析:一个可扩展的端到端自动化框架,用于对新的住宅木框架建筑进行概率地震风险和恢复评估
  • DOI:
    10.1016/j.jobe.2024.110545
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Laxman Dahal;Henry Burton;Zhengxiang Yi;Zizhao He
  • 通讯作者:
    Zizhao He
Seismic collapse performance of Los Angeles soft, weak, and open-front wall line woodframe structures retrofitted using different procedures
  • DOI:
    10.1007/s10518-018-00524-w
  • 发表时间:
    2018-12-14
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Henry Burton;Aryan Rezaei Rad;Zhengxiang Yi;Damian Gutierrez;Koyejo Ojuri
  • 通讯作者:
    Koyejo Ojuri

Henry Burton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Burton', 18)}}的其他基金

CAREER: From Performance-Based Engineering to Resilience and Sustainability: Design and Assessment Principles for the Next Generation of Buildings
职业:从基于性能的工程到弹性和可持续性:下一代建筑的设计和评估原则
  • 批准号:
    1554714
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Utilizing Remote Sensing to Assess the Implication of Tall Building Performance on the Resilience of Urban Centers
利用遥感评估高层建筑性能对城市中心复原力的影响
  • 批准号:
    1538866
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Post-Disaster Housing Recovery Integrating Performance Based Engineering and Urban Simulation
合作研究:结合基于性能的工程和城市模拟对灾后住房恢复进行建模
  • 批准号:
    1538747
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似海外基金

Medium- to long-term economic impact assessment method for natural disasters and the benefits of disaster mitigation measures
自然灾害中长期经济影响评估方法及减灾措施效益
  • 批准号:
    23H01533
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A disaster for whom? The conditional impact of natural disasters on civil conflicts
对谁来说是一场灾难?
  • 批准号:
    2757461
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
INSPIRE: Integrated Disaster Cycle Approach for Catastrophic Earthquake Impact Reduction
INSPIRE:减少灾难性地震影响的综合灾害周期方法
  • 批准号:
    RGPIN-2019-05898
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
Inferring causal impact on housing prices for post-disaster community recovery estimation
推断对房价的因果影响以进行灾后社区恢复估计
  • 批准号:
    573189-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    University Undergraduate Student Research Awards
INSPIRE: Integrated Disaster Cycle Approach for Catastrophic Earthquake Impact Reduction
INSPIRE:减少灾难性地震影响的综合灾害周期方法
  • 批准号:
    RGPIN-2019-05898
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
Geospatial Bayesian Methods for Disaster Impact Estimation
灾害影响估计的地理空间贝叶斯方法
  • 批准号:
    2564803
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Studentship
INSPIRE: Integrated Disaster Cycle Approach for Catastrophic Earthquake Impact Reduction
INSPIRE:减少灾难性地震影响的综合灾害周期方法
  • 批准号:
    RGPIN-2019-05898
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
Urban expansion and its impact on the urban disaster in the rapidly urbanizing South Asian cities
快速城市化的南亚城市的城市扩张及其对城市灾害的影响
  • 批准号:
    19F19305
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Disaster impact analysis on natural resource market
灾害对自然资源市场的影响分析
  • 批准号:
    19K01623
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
INSPIRE: Integrated Disaster Cycle Approach for Catastrophic Earthquake Impact Reduction
INSPIRE:减少灾难性地震影响的综合灾害周期方法
  • 批准号:
    RGPIN-2019-05898
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了