Multimodal Disaster Impact Assessment Models for Enhanced Resilience

增强抵御能力的多模式灾害影响评估模型

基本信息

  • 批准号:
    2242767
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

Immediately after a major hazard event (e.g., wildfire, earthquake, flood), a prompt assessment of the geographic distribution and severity of infrastructure damage is vital to the success of the emergency response and early recovery planning. This situational awareness is an important part of the decision-making processes that are implemented by facility owners, users, emergency responders and local and state officials. Conversely, a general lack of knowledge about the impacted state of the built environment can lead to a disorganized public response and slower recovery. While a comprehensive assessment of the extent and distribution of infrastructure damage can be obtained from in-person inspections conducted by building professionals, depending on the scale of the event, this can be a lengthy, resource intensive process. This Disaster Resilience Research Grants (DRRG) project will address this challenge by utilizing principles from artificial intelligence (AI) to develop near real-time infrastructure damage prediction models that can process and utilize different types of data and information (e.g., images, text, tabular data). By advancing our ability to effectively integrate disparate information sources, this project aims to transform the way that physical damage to infrastructure is estimated in the aftermath of a major disaster event, thereby enhancing the emergency response and recovery planning phases that follow. The research will provide training for doctoral and masters students and an opportunity to teach undergraduates from different backgrounds how science and engineering coupled with AI technologies can be used to improve community response to extreme events.Fundamental concepts and methodological advancements in multimodal learning will be used to transform and enhance infrastructure damage prediction models for use in the immediate post-event environment. The state-of-the-art in image-based damage assessment will be advanced along two dimensions: (1) developing Vision Transformer-based methods and (2) establishing a self-supervised learning methodology for training the models using large collections of unlabeled data. A new knowledge base will be established around the broad area of multimodal data fusion for infrastructure damage prediction models. Specific questions regarding unified representation, translation across and alignment between modalities and data fusion will be answered. A new type of hazard-agnostic infrastructure damage prediction model will also emerge from this research. Such a model will have the ability to receive an integrated representation of one or more types of input modalities (i.e., image, text, and engineering/tabular data) and produce, as output, an infrastructure damage level that is agnostic to the type of causal event (e.g., earthquake or hurricane). Using a comprehensive data set from multiple natural hazard events (hurricane and earthquake), the project will include experiments to shed new light on the ability of both hazard-specific and hazard-agnostic multimodal models to enhance early-stage infrastructure damage assessments for increased situational awareness and enhanced resilience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在发生重大危害事件(例如野火,地震,洪水)之后,立即对基础设施损害的地理分布和严重性进行迅速评估对于紧急响应和早期恢复计划的成功至关重要。这种情境意识是由设施所有者,用户,紧急响应者以及地方和州官员实施的决策过程的重要组成部分。相反,人们普遍缺乏对建筑环境影响状态的知识,可能会导致公众反应混乱和恢复较慢。虽然可以从建筑专业人员进行的面对面检查中对基础设施损害的范围和分布进行全面评估,这取决于事件的规模,但这可能是一个冗长的,资源密集的过程。这项灾难弹性研究补助金(DRRG)项目将通过利用人工智能(AI)的原则来应对这一挑战,以开发近实时基础架构损害预测模型,这些模型可以处理并利用不同类型的数据和信息(例如图像,文本,表格数据)。通过提高我们有效整合不同信息源的能力,该项目旨在改变在重大灾难事件后估计基础设施的物理损害的方式,从而增强了随后的紧急响应和恢复计划阶段。这项研究将为博士和硕士学生提供培训,并有机会教授不同背景的本科生,科学和工程以及AI技术的结合如何可用于改善社区对极端事件的反应。多模式学习的基础概念和方法学的进步将用于转化和增强基础结构损害损害模型,以实现直接范围内的现有环境。基于图像的损害评估中最新的损害评估将沿两个维度进行:(1)开发基于视觉变压器的方法,以及(2)建立一种自我监督的学习方法,用于使用大量未标记数据培训模型来培训模型。将在基础设施损害预测模型的多模式数据融合的广泛领域建立一个新的知识库。有关统一表示形式,跨越模式和数据融合之间的一致性的具体问题。这项研究还将出现一种新型的危害 - 反应基础设施损害预测模型。这种模型将有能力接收一种或多种类型的输入模式(即图像,文本和工程/表格数据)的集成表示,并作为输出产生一种基础架构损害水平,这对因果事件的类型(例如地震或飓风)而言是不可思议的。使用来自多个自然危害事件(飓风和地震)的全面数据集,该项目将包括实验,以使危险特定和危害 - 危险性和危险性多模型模型的能力有了新的启示,以增强早期基础设施损害评估,以提高情境意识和通过增强的恢复性奖励。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Burton其他文献

Out-of-plane (flatwise) behavior of through-tenon connections using the integral mechanical attachment technique
  • DOI:
    10.1016/j.conbuildmat.2020.120001
  • 发表时间:
    2020-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    Aryan Rezaei Rad;Henry Burton;Yves Weinand
  • 通讯作者:
    Yves Weinand
Quantifying the effect of probability model misspecification in seismic collapse risk assessment
  • DOI:
    10.1016/j.strusafe.2022.102185
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laxman Dahal;Henry Burton;Samuel Onyambu
  • 通讯作者:
    Samuel Onyambu
Sharing data and code facilitates reproducible and impactful research
共享数据和代码有助于可重复和有影响力的研究
  • DOI:
    10.1177/87552930241259397
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5
  • 作者:
    J. Baker;H. Crowley;David J. Wald;Ellen Rathje;Siu;Brendon A. Bradley;Henry Burton;Ashly Cabas;Serena Cattari;C. Cauzzi;F. Cavalieri;Santina Contreras;Rodrigo Costa;Ronald T Eguchi;D. Lallemant;D. Lignos;Brett W Maurer;C. Molina Hutt;A. Sextos;E. Seyhan;Vitor Silva;H. Sucuoğlu;E. Taciroğlu;Eric M. Thompson
  • 通讯作者:
    Eric M. Thompson
A framework to automate the design of digitally-fabricated timber plate structures
  • DOI:
    10.1016/j.compstruc.2020.106456
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aryan Rezaei Rad;Henry Burton;Nicolas Rogeau;Petras Vestartas;Yves Weinand
  • 通讯作者:
    Yves Weinand

Henry Burton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Burton', 18)}}的其他基金

CAREER: From Performance-Based Engineering to Resilience and Sustainability: Design and Assessment Principles for the Next Generation of Buildings
职业:从基于性能的工程到弹性和可持续性:下一代建筑的设计和评估原则
  • 批准号:
    1554714
  • 财政年份:
    2016
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Utilizing Remote Sensing to Assess the Implication of Tall Building Performance on the Resilience of Urban Centers
利用遥感评估高层建筑性能对城市中心复原力的影响
  • 批准号:
    1538866
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Post-Disaster Housing Recovery Integrating Performance Based Engineering and Urban Simulation
合作研究:结合基于性能的工程和城市模拟对灾后住房恢复进行建模
  • 批准号:
    1538747
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似国自然基金

智能驾驶系统连续学习算法知识迁移和灾难性遗忘问题研究
  • 批准号:
    52302487
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
峨参萃取物脱氧鬼臼毒素诱导恶性胸膜间皮瘤细胞出现有丝分裂灾难与化疗增敏的作用和机制研究
  • 批准号:
    82305208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AND-1抑制有丝分裂灾难诱导未分化甲状腺癌化疗耐药作用及机制研究
  • 批准号:
    82372618
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
类泛素蛋白SUMO2抑制细胞有丝分裂灾难导致胰腺癌化疗耐药及其靶向创新分子药物筛选的研究
  • 批准号:
    82372769
  • 批准年份:
    2023
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
靶向拮抗YAP1/TEAD4-KIF23通路诱导胃癌细胞有丝分裂灾难的作用与机制
  • 批准号:
    82303040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Future
未来
  • 批准号:
    10835245
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Futureproofing Health: Developing a Center for Resilient Health in Disasters
面向未来的健康:建立灾难恢复健康中心
  • 批准号:
    10835243
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Futureproofing Health: Developing a Center for Climate-Resilient Health in Disasters
面向未来的健康:建立灾害中气候适应性健康中心
  • 批准号:
    10835246
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
Medium- to long-term economic impact assessment method for natural disasters and the benefits of disaster mitigation measures
自然灾害中长期经济影响评估方法及减灾措施效益
  • 批准号:
    23H01533
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Futureproofing Health: Developing a Center for Climate-Resilient Health in Disasters
面向未来的健康:建立灾害中气候适应性健康中心
  • 批准号:
    10835247
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了