CRII: SHF: Testing Fairness in Human Decisions with Algorithmic Bias
CRII:SHF:用算法偏差测试人类决策的公平性
基本信息
- 批准号:2245796
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Unfairness in human decisions has been a long-standing issue in our society that constantly threatens the equality rights of historically underrepresented groups. This issue has been exacerbated in decision making processes where a machine learning software learns from potentially unfair human decisions and makes potentially unfair predictions to guide future human decisions. One such example is the talent hiring process where a human resource person screens a list of candidate resumes ranked by a machine learning software to decide who deserves an interview. Human decision fairness is especially important in this scenario since (1) the machine learning software will inherit the bias when trained on unfair human decisions; (2) even with unbiased machine learning software, the final decisions can still be biased as long as the human resource person is biased. This project will approach this historically challenging issue from a different direction. It learns to model the human decisions with a machine learning software and utilizes the algorithmic bias of that software to detect bias in the human decisions. This work could potentially advance the equity process in many decision making activities such as talent hiring, credit card approval, and school admission. In contrast to most of the existing research focusing on improving algorithmic fairness, this work aims to isolate the algorithmic bias inherited from the training data (with human decisions as dependent variables) as an indicator for human decision unfairness. To do this, the project will use a novel technique to test fairness in human decisions. Specifically, machine learning models are trained on the human decisions under test with re-balanced class distribution in each demographic group, then tests the learned model with a regression test suite of comparative judgements. If the model fails the regression test, the human decisions it was trained on will be considered as unfair. While it is difficult to directly test whether a human has bias, it is easier to test whether a machine learning model makes biased predictions using comparative judgements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类决策中的不公平一直是我们社会中的一个长期问题,不断威胁着历史上代表性不足的群体的平等权利。在决策过程中,机器学习软件从潜在的不公平的人类决策中学习,并做出潜在的不公平预测来指导未来的人类决策,这一问题变得更加严重。一个这样的例子是人才招聘过程,人力资源人员筛选由机器学习软件排名的候选人简历列表,以决定谁值得面试。在这种情况下,人类决策的公平性尤为重要,因为(1)机器学习软件在接受不公平的人类决策训练时会继承偏见;(2)即使使用无偏见的机器学习软件,只要人力资源人员有偏见,最终决策仍然会有偏见。这个项目将从不同的方向来处理这个具有历史挑战性的问题。它学会用机器学习软件对人类决策进行建模,并利用该软件的算法偏差来检测人类决策中的偏差。这项工作可能会在许多决策活动中推进公平过程,如人才招聘,信用卡审批和学校录取。与大多数专注于提高算法公平性的现有研究相反,这项工作旨在隔离从训练数据(以人类决策为因变量)继承的算法偏见,作为人类决策不公平性的指标。为此,该项目将使用一种新技术来测试人类决策的公平性。具体来说,机器学习模型是在每个人口统计组中重新平衡类分布的测试下根据人类决策进行训练的,然后用比较判断的回归测试套件测试学习模型。如果模型在回归测试中失败,那么它所训练的人类决策将被认为是不公平的。虽然很难直接测试人类是否有偏见,但通过比较判断来测试机器学习模型是否会做出有偏见的预测更容易。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhe Yu其他文献
pH-responsive superporogen combined with PDT based on poly Ce6 ionic liquid grafted on SiO2 for combating MRSA biofilm infection.
基于 SiO2 接枝聚 Ce6 离子液体的 pH 响应性超致孔剂与 PDT 相结合,用于对抗 MRSA 生物膜感染。
- DOI:
10.7150/thno - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chaoli Wang;Peng Chen;Youbei Qiao;Yuan Kang;Chaoren Yan;Zhe Yu;Jian Wang;Xin He;Hong Wu - 通讯作者:
Hong Wu
Familial clustering of erosive hand osteoarthritis
糜烂性手骨关节炎的家族聚集性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
N. Kazmers;K. Novak;Zhe Yu;Huong D. Meeks;G. Fulde;Joy L Thomas;T. Barker;M. Jurynec - 通讯作者:
M. Jurynec
A Novel Ambipolar Ferroelectric Tunnel FinFET based Content Addressable Memory with Ultra-low Hardware Cost and High Energy Efficiency for Machine Learning
基于新型双极铁电隧道 FinFET 的内容可寻址存储器,具有超低硬件成本和高能效,适用于机器学习
- DOI:
10.1109/vlsitechnologyandcir46769.2022.9830413 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jin Luo;Weikai Xu;Boyi Fu;Zhe Yu;Mengxuan Yang;Yiqing Li;Qianqian Huang;Ruei - 通讯作者:
Ruei
Neural-network-based Power System State Estimation with Extended Observability
具有扩展可观测性的基于神经网络的电力系统状态估计
- DOI:
10.35833/mpce.2020.000362 - 发表时间:
2021 - 期刊:
- 影响因子:6.3
- 作者:
Guanyu Tian;Guo Yingzhong;Di Shi;Jing Fu;Zhe Yu;Qun Zhou - 通讯作者:
Qun Zhou
FAST$^2$: Better Automated Support for Finding Relevant SE Research Papers
FAST$^2$:更好地自动支持查找相关 SE 研究论文
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhe Yu;T. Menzies - 通讯作者:
T. Menzies
Zhe Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
- 批准号:81572468
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
SHF: Small: Testing and Design-for-Test Techniques for Monolithic 3D Integrated Circuits
SHF:小型:单片 3D 集成电路的测试和测试设计技术
- 批准号:
2309822 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
- 批准号:
2313028 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SHF: Small: Automated Verification and Synthesis of Input Generators in Property-Based Testing Frameworks
SHF:小型:基于属性的测试框架中输入生成器的自动验证和合成
- 批准号:
2321680 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
- 批准号:
2313027 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
- 批准号:
2312487 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
- 批准号:
2211589 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SHF: Small: CT-DDS -- Scalable Concolic Testing of Parallel Applications With Shared Dynamic Data Structures
SHF:小型:CT-DDS——具有共享动态数据结构的并行应用程序的可扩展 Concolic 测试
- 批准号:
2226448 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
- 批准号:
2211588 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SHF: Small: Software Testing Cognizant of Just-in-time Compilers
SHF:小型:了解即时编译器的软件测试
- 批准号:
2217696 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant














{{item.name}}会员




