Next generation particle filters for stochastic partial differential equations

用于随机偏微分方程的下一代粒子滤波器

基本信息

  • 批准号:
    EP/W016125/1
  • 负责人:
  • 金额:
    $ 38.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Many aspects critical to our lives (e.g. availability of renewable energy resources, electrical patterns in the human heart, and the evolution of global pandemics) are not available for direct measurement. Blending models with measured data lets us make reasonable inferences about the state of a system. When using partial observations with a stochastic model to make rigorous inferences about an evolving system, we call this process stochastic filtering. The choice of the state model plays a crucial role in the applicability of any given stochastic filtering methodology. The proposed research will focus stochastic partial differential equations as state models, as they are some of the most versatile models applied in diverse areas of human endeavour: physics, biology, chemistry, weather prediction, finance, renewable energy and manufacturing, etc. Practical implementation of stochastic filtering for phenomena modelled by stochastic partial differential equations remains an outstanding challenge. One key question is how to approximate to the "true" description of the state of the system in a computationally feasible way. Particle filters (PFs) are some of the most successful methods for solving the filtering problem, offering a theoretically justified approach to inferences about the state of hidden systems. PFs involve sets of "particles": different realizations of the state model. At regular intervals, the cloud of particles is corrected using partial and noisy observations. In the language of Data Assimilation (DA), evolving particles as realizations of the model is the forecast step, whilst correction using data is the analysis step. PFs have proved immensely successful in engineering applications (for example) provided the state model has small to moderate size. They succeed by processing data sequentially: at the analysis step only the new observations are used, without the need to revisit past observations. It is frequently impossible to process the entire set of data available up to the current time. Many challenging real world problems have large model states, with large quantities of observations becoming available at each analysis step. In numerical weather prediction, tens of millions of data measurements occur at each analysis time. This makes each individual analysis step (almost) as hard as processing data nonsequentially. Recently, the PI, Co-I and colleagues have researched methodologies that can alleviate this problem, but certainly not overcome it.We need a new paradigm for developing efficient PFs for these challenging problems. The current paradigm separates the DA mechanism into sequential forecast and analysis steps, describing the PF in a convenient and pedagogical manner. In particular, the evolution of the particles between analysis steps ignores the forthcoming data. In our new paradigm, rather than evolving the particles using a numerical approximation of the stochastic partial differential equation, we advocate "observation informed" trajectories, where the particles are "nudged" in suitably chosen directions. Currently in data assimilation, procedures that move the particles towards observations are ad-hoc methodologies are not theoretically justified. In contrast, we will develop methodologies that are provably consistent approximations of the filtering problem. Our nudges will perturb the trajectories of the particles to maximise the likelihood of their positions given the observation data. This introduces a bias that is eliminated through the judicious selection of particles. The new methodology will be optimized for stochastic partial differential equations, from fluid dynamics, reaction-diffusion equations, Allen-Cahn etc. Our project will deliver the complete pipeline for our paradigm, from theoretical analysis to high performance software implementations that can run on large parallel computers, enabling performance evaluations on challenging benchmarks.
许多对我们生活至关重要的方面(例如,可再生能源的可用性、人类心脏的电模式,以及全球流行病的演变)都无法直接测量。将模型与测量数据混合在一起,可以让我们对系统的状态做出合理的推断。当使用随机模型的部分观测来对一个演化系统做出严格的推断时,我们称之为随机过滤。状态模型的选择对任何给定的随机滤波方法的适用性都起着至关重要的作用。拟议的研究将把随机偏微分方程作为状态模型,因为它们是应用于人类工作的不同领域的一些最通用的模型:物理、生物、化学、天气预报、金融、可再生能源和制造业等。对由随机偏微分方程建模的现象的实际实现仍然是一个突出的挑战。一个关键问题是如何以一种在计算上可行的方式接近系统状态的“真实”描述。粒子滤波(PFS)是解决滤波问题的最成功的方法之一,它提供了一种理论上合理的方法来推断隐藏系统的状态。PFS涉及多组“粒子”:状态模型的不同实现。每隔一定的时间间隔,使用局部观测和噪声观测来修正粒子云。在数据同化语言(DA)中,作为模式实现的演化粒子是预测步骤,而使用数据进行校正是分析步骤。PFS在工程应用中已被证明是非常成功的(例如),只要状态模型具有小到中等大小。它们通过按顺序处理数据而取得成功:在分析步骤中,只使用新的观测数据,而不需要重新查看过去的观测数据。通常不可能处理到当前时间为止可用的整个数据集。许多具有挑战性的现实世界问题都有很大的模型状态,在每个分析步骤中都有大量的观察数据。在数值天气预报中,每个分析时间都会出现数千万次数据测量。这使得每个单独的分析步骤(几乎)都像无序处理数据一样困难。最近,PI、Co-I和他的同事们研究了可以缓解这个问题的方法,但肯定不能克服它。我们需要一个新的范式来开发有效的PFS来解决这些具有挑战性的问题。目前的范式将DA机制分为连续的预测和分析步骤,以一种方便和有教育意义的方式描述了PF。特别是,分析步骤之间粒子的演化忽略了即将到来的数据。在我们的新范式中,我们不是使用随机偏微分方程式的数值近似来演化粒子,而是提倡“观察通知”的轨迹,在这种轨迹中,粒子在适当的选择方向上被“轻推”。目前在数据同化中,将粒子移动到观测中的程序是特别的方法,在理论上是不合理的。相反,我们将开发对过滤问题进行可证明的一致近似的方法。我们的轻推将扰乱粒子的轨迹,以最大限度地提高给定观测数据的位置的可能性。这引入了一种通过明智地选择粒子来消除的偏差。新方法将针对流体动力学、反应扩散方程、Allen-Cahn等随机偏微分方程式进行优化。我们的项目将为我们的范例提供完整的管道,从理论分析到可在大型并行计算机上运行的高性能软件实施,从而能够在具有挑战性的基准上进行性能评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Cotter其他文献

A mixed finite-element, finite-volume, semi-implicit discretisation for atmospheric dynamics: Spherical geometry
大气动力学的混合有限元、有限体积、半隐式离散:球面几何
  • DOI:
    10.48550/arxiv.2402.13738
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Melvin;Ben Shipway;Nigel Wood;Tommaso Benacchio;T. Bendall;I. Boutle;Alex Brown;Christine Johnson;James Kent;Stephen Pring;Chris Smith;M. Zerroukat;Colin Cotter;J. Thuburn
  • 通讯作者:
    J. Thuburn
Correction: Evaluation of mAb 2C5-modified dendrimer-based micelles for the co-delivery of siRNA and chemotherapeutic drug in xenograft mice model
  • DOI:
    10.1007/s13346-024-01601-1
  • 发表时间:
    2024-04-18
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Satya Siva Kishan Yalamarty;Nina Filipczak;Tanvi Pathrikar;Colin Cotter;Janaína Artem Ataide;Ed Luther;Swarali Paranjape;Vladimir Torchilin
  • 通讯作者:
    Vladimir Torchilin
On the calibration of multilevel Monte Carlo ensemble forecasts
多级蒙特卡罗集合预报的校准
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alastair Gregory;Colin Cotter
  • 通讯作者:
    Colin Cotter
Variational water-wave model with accurate dispersion and vertical vorticity
  • DOI:
    10.1007/s10665-009-9346-3
  • 发表时间:
    2009-10-28
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Colin Cotter;Onno Bokhove
  • 通讯作者:
    Onno Bokhove

Colin Cotter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Cotter', 18)}}的其他基金

Parallel-in-time computation for sedimentary landscapes
沉积景观的并行时间计算
  • 批准号:
    EP/W015439/1
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Parallel Paradigms for Numerical Weather Prediction
数值天气预报的并行范式
  • 批准号:
    NE/R008795/1
  • 财政年份:
    2018
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Moving meshes for global atmospheric modelling
用于全球大气建模的移动网格
  • 批准号:
    NE/M013634/1
  • 财政年份:
    2015
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Improving Prediction of Fronts
改进锋面预测
  • 批准号:
    NE/K012533/1
  • 财政年份:
    2014
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Next Generation Weather and Climate Prediction: Atmospheric Model Dynamical Core
下一代天气和气候预测:大气模型动力核心
  • 批准号:
    NE/I02013X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
A new approach to guaranteeing physical wave propagation on triangular meshes for numerical weather prediction
保证数值天气预报三角网格上物理波传播的新方法
  • 批准号:
    NE/I016007/1
  • 财政年份:
    2011
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Unstructured mesh dynamical core for atmospheric modelling using geophysically-optimal finite elements
使用地球物理最优有限元进行大气建模的非结构化网格动力核心
  • 批准号:
    NE/I000747/1
  • 财政年份:
    2010
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant
Diagnosing multiscale entrainment in density-driven flows in the ocean
诊断海洋中密度驱动流的多尺度夹带
  • 批准号:
    NE/G000212/1
  • 财政年份:
    2009
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Research Grant

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Standard Grant
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
  • 批准号:
    10577371
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Next Generation ALPHA Zebrafish Tank Washer: High Throughput with Reduced Environmental Impact
下一代 ALPHA 斑马鱼槽清洗机:高吞吐量,减少环境影响
  • 批准号:
    10737523
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
  • 批准号:
    10727361
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Next Generation Gene-Gun Delivered DNA and RNA Immunotherapeutic Vaccines for Melanoma.
下一代基因枪提供针对黑色素瘤的 DNA 和 RNA 免疫治疗疫苗。
  • 批准号:
    10760452
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Next-generation nanomedicine for acute ischemic stroke
治疗急性缺血性中风的下一代纳米药物
  • 批准号:
    10603229
  • 财政年份:
    2023
  • 资助金额:
    $ 38.83万
  • 项目类别:
Development of next-generation real-time dosimeters for particle beam cancer therapy using advanced RPL materials
使用先进的 RPL 材料开发用于粒子束癌症治疗的下一代实时剂量计
  • 批准号:
    22H02009
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10668497
  • 财政年份:
    2022
  • 资助金额:
    $ 38.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了