HOLOMORPHIC DYNAMICS AND RELATED THEMES

全态动力学及相关主题

基本信息

  • 批准号:
    2247613
  • 负责人:
  • 金额:
    $ 36.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The theory of dynamical systems studies the long-term behavior of trajectories described by iteration procedures, and how such behavior depends on the parameters of the system. Intricate fractal objects (like Julia sets and the Mandelbrot set) may appear as phase and parameter diagrams for such systems. This project focuses on complex and real low-dimensional dynamical systems described by simple quadratic equations. Despite the simplicity of the model, such systems are known to display complicated chaotic behavior indicative of various phenomena appearing in celestial mechanics, fluid dynamics, statistical mechanics, biology, and other branches of natural science. The proposed activity will result in deeper insights into the small scale structure of dynamical systems, in the training of highly qualified postdoctoral fellows and graduate students, in broader interactions between senior and junior experts in various branches of real and complex dynamics, and in the preparation of a book to assist the research community in acquiring background in the area. In addition, the Principal Investigator will facilitate communication within the field through the organization of international conferences and scientific programs and by maintaining a dynamics-related web site.The project addresses several geometric themes within complex low-dimensional dynamics, making a gradual transition from the one-dimensional to the two-dimensional world. In connection with dynamics in one dimension, renormalization will be investigated as a unifying and powerful tool for elucidating the small-scale structure of dynamical objects. Specific topics under consideration include a semi-local theory of neutral maps and a priori bounds for infinitely renormalizable quadratic polynomials with applications to the problem of local connectivity of the Mandelbrot set. Other topics of study include the dynamics generated by Schwarz reflections in quadrature domains and the dynamics of dissipative complex Henon maps. In connection with the latter, specific themes include the construction of two-dimensional examples of real and complex wild attractors and the development of a general theory of unimodal Henon maps. The project will also explore applications of higher dimensional holomorphic dynamics to the spectral theory of self-similar groups. Finally, the principal investigator will continue to work on a multi-volume book on the conformal geometry and dynamics of quadratic polynomials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统理论研究由迭代过程描述的轨迹的长期行为,以及这种行为如何依赖于系统的参数。复杂的分形对象(如Julia集和Mandelbrot集)可能会显示为此类系统的相图和参数图。本计画主要研究由简单二次方程式所描述的复杂且真实的低维动力系统。尽管模型简单,但已知这样的系统显示出复杂的混沌行为,表明出现在天体力学、流体动力学、统计力学、生物学和自然科学的其他分支中的各种现象。拟议的活动将导致更深入地了解小规模结构的动力系统,在高素质的博士后研究员和研究生的培训,在更广泛的互动高级和初级专家之间的各个分支的真实的和复杂的动力学,并在编写一本书,以协助研究界在获取背景在该地区。此外,首席研究员将通过组织国际会议和科学方案以及维持一个与动力学有关的网站,促进该领域内的交流,该项目涉及复杂低维动力学中的几个几何主题,使一维世界逐渐过渡到二维世界。在一维动力学方面,重整化将被研究为一个统一的和强大的工具,用于阐明动力学对象的小尺度结构。具体的议题正在审议中包括一个半本地理论的中立映射和先验界的无限renormalizable二次多项式的应用问题的局部连通性的Mandelbrot集。其他研究课题包括施瓦茨反射在正交域和耗散复杂的Henon映射的动力学产生的动力学。与后者,具体的主题包括建设的二维例子的真实的和复杂的野生吸引和发展的一般理论单峰Henon地图。该项目还将探索高维全纯动力学在自相似群谱理论中的应用。最后,首席研究员将继续致力于一本关于二次多项式的共形几何和动力学的多卷书。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Lyubich其他文献

Stability and bifurcations for dissipative polynomial automorphisms of $${{\mathbb {C}}^2}$$
  • DOI:
    10.1007/s00222-014-0535-y
  • 发表时间:
    2014-09-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Romain Dujardin;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich
MLC at Feigenbaum points
费根鲍姆点的 MLC
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dzmitry Dudko;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich

Mikhail Lyubich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Lyubich', 18)}}的其他基金

Themes in Holomorphic Low-Dimensional Dynamics
全纯低维动力学主题
  • 批准号:
    1901357
  • 财政年份:
    2019
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
  • 批准号:
    1600519
  • 财政年份:
    2016
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
Complex and Real Low Dimensional Dynamics
复杂而真实的低维动力学
  • 批准号:
    1301602
  • 财政年份:
    2013
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Geometric Aspects of Low Dimensional Dynamics
低维动力学的几何方面
  • 批准号:
    1007266
  • 财政年份:
    2010
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Program in Holomorphic Dynamics, Laminations and Hyperbolic Geometry
全纯动力学、叠片和双曲几何课程
  • 批准号:
    0555429
  • 财政年份:
    2006
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Geometric Structures in Holomorphic Dynamics and Teichmuller Theory
全纯动力学中的几何结构和 Teichmuller 理论
  • 批准号:
    0505652
  • 财政年份:
    2005
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
International Conference in Geometry and Dynamical Systems, January 2003 - Cuernavaca, Mexico
几何和动力系统国际会议,2003 年 1 月 - 墨西哥库埃纳瓦卡
  • 批准号:
    0224996
  • 财政年份:
    2002
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Research in Dynamical Systems
动力系统研究
  • 批准号:
    0103646
  • 财政年份:
    2001
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant
Graphs and Patterns in Mathematics and Theoretical Physics
数学和理论物理中的图形和模式
  • 批准号:
    0107455
  • 财政年份:
    2001
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Consequences of secondary contact between native and closely related exotic species: ecological processes and genome dynamics
本地物种和密切相关的外来物种之间二次接触的后果:生态过程和基因组动态
  • 批准号:
    23KJ2156
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishing the dynamics of lymphoid clonal hematopoiesis and its aging-related disease consequences
建立淋巴克隆造血的动态及其与衰老相关的疾病后果
  • 批准号:
    10713682
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Linking membrane voltage dynamics to fMRI measurement of functional connectivity in resting state and task related activities
将膜电压动力学与静息状态和任务相关活动中功能连接的功能磁共振成像测量联系起来
  • 批准号:
    10751310
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
The short and long-term dynamics of opioid/stimulant use: Mixed methods to informoverdose prevention and treatment related to polysubstance use
阿片类药物/兴奋剂使用的短期和长期动态:与多物质使用相关的过量预防和治疗的混合方法
  • 批准号:
    10841942
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
Fine-root related carbon dynamics in Asian tropical, subtropical, and temperate forests
亚洲热带、亚热带和温带森林细根相关的碳动态
  • 批准号:
    22KK0168
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
The Role of CSF Dynamics in Infant Brain and Behavioral Development in Down Syndrome and Related Neurodevelopmental Disorders
脑脊液动力学在唐氏综合症和相关神经发育障碍婴儿大脑和行为发育中的作用
  • 批准号:
    10507609
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
The short and long-term dynamics of opioid/stimulant use: Mixed methods to informoverdose prevention and treatment related to polysubstance use
阿片类药物/兴奋剂使用的短期和长期动态:与多物质使用相关的过量预防和治疗的混合方法
  • 批准号:
    10590209
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
  • 批准号:
    RGPIN-2018-03770
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
  • 批准号:
    RGPIN-2021-04100
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Discovery Grants Program - Individual
Diet and foraging-related aspects of host-parasite dynamics in freshwater systems
淡水系统中宿主-寄生虫动态的饮食和觅食相关方面
  • 批准号:
    RGPIN-2020-04622
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了