Geometric Structures in Holomorphic Dynamics and Teichmuller Theory

全纯动力学中的几何结构和 Teichmuller 理论

基本信息

  • 批准号:
    0505652
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTThis will be a broad program of research in geometric aspects of holomorphic dynamics, Teichmuller theory, laminations, and related areas. The project addresses central problems in these fields: The Local Connectivity Problem for the Mandelbrot set and for Julia sets would help to give a thorough understanding of dynamics for the complex quadratic family. TheRenormalization and Universality Conjectures concern fundamental rigidity features of the phase and parameter domains for dynamical systems. The Regular or Stochastic Conjecture would give a complete measure-theoretic picture of the dynamics of unimodal maps. The Ehrenpreis Conjecture asserts that any two compact Riemann surfaces have almost isomorphic compact coverings. The project would explore further interplay between holomorphic dynamics, hyperbolic geometry, Teichmuller theory, and the theory of laminations, as well as the interplay between real and complex dynamics in one and two variables.Dynamical systems theory studies evolution of various systems described by differential equations or by the iteration of a single map. It has numerous applications in celestial mechanics, statistical physics, fluid dynamics, biology, and other branches of natural science. Holomorphic dynamics is the part of dynamical systems theory that deals with iterates of complex analytic maps. It has proved to be a powerful tool in understanding important models of real low-dimensional dynamics. There are numerous interconnections between holomorphic dynamics, geometric analysis, hyperbolic geometry, and the theory of foliated spaces. Holomorphic dynamics also produces beautiful fractal objects, such as Julia sets and the Mandelbrot set, whose intricate structure has fascinated scientists for decades. All of this structure and its applications will be further explored by the Stony Brook dynamics group.
这将是一个全纯动力学几何方面的广泛研究项目,泰希穆勒理论,层合板及相关领域。该项目解决了这些领域的核心问题:Mandelbrot集和Julia集的局部连通性问题将有助于彻底了解复杂二次族的动力学。非正则化和普适性猜想涉及动力系统相域和参数域的基本刚性特征。规则或随机猜想将给出单峰映射动力学的完整的测度论图景。Ehrenpreis猜想认为,任何两个紧黎曼曲面都有几乎同构的紧覆盖。该项目将进一步探索全纯动力学、双曲几何学、泰希穆勒理论和层合理论之间的相互作用,以及一和两个变量的实动力学和复动力学之间的相互作用。动力系统理论研究由微分方程式或通过单个映射的迭代描述的各种系统的演化。它在天体力学、统计物理、流体力学、生物学和自然科学的其他分支中有许多应用。全纯动力学是动力系统理论中处理复杂解析映射迭代的部分。事实证明,它是理解真实低维动力学的重要模型的有力工具。全纯动力学、几何分析、双曲几何和分层空间理论之间有许多相互联系。全纯动力学还产生美丽的分形物,如Julia集和Mandelbrot集,其复杂的结构几十年来一直吸引着科学家。所有这种结构及其应用都将由石溪动力学小组进一步探索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Lyubich其他文献

Stability and bifurcations for dissipative polynomial automorphisms of $${{\mathbb {C}}^2}$$
  • DOI:
    10.1007/s00222-014-0535-y
  • 发表时间:
    2014-09-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Romain Dujardin;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich
MLC at Feigenbaum points
费根鲍姆点的 MLC
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dzmitry Dudko;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich

Mikhail Lyubich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Lyubich', 18)}}的其他基金

HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
  • 批准号:
    2247613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Themes in Holomorphic Low-Dimensional Dynamics
全纯低维动力学主题
  • 批准号:
    1901357
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
  • 批准号:
    1600519
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Complex and Real Low Dimensional Dynamics
复杂而真实的低维动力学
  • 批准号:
    1301602
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Aspects of Low Dimensional Dynamics
低维动力学的几何方面
  • 批准号:
    1007266
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Program in Holomorphic Dynamics, Laminations and Hyperbolic Geometry
全纯动力学、叠片和双曲几何课程
  • 批准号:
    0555429
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Conference in Geometry and Dynamical Systems, January 2003 - Cuernavaca, Mexico
几何和动力系统国际会议,2003 年 1 月 - 墨西哥库埃纳瓦卡
  • 批准号:
    0224996
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research in Dynamical Systems
动力系统研究
  • 批准号:
    0103646
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference "Around Dynamics"
“围绕动力学”会议
  • 批准号:
    0110251
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
  • 批准号:
    2203358
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Differential geometry of holomorphic vector bundles with Rizza structures and it applications
Rizza结构全纯向量丛的微分几何及其应用
  • 批准号:
    16K05135
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic Poisson structures
全纯泊松结构
  • 批准号:
    EP/K033654/1
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    1047602
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
  • 批准号:
    1001328
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research on knot theory using contact structures and holomorphic curves
基于接触结构和全纯曲线的纽结理论研究
  • 批准号:
    21740041
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
弗洛尔理论、全纯曲线理论和辛结构、接触结构研究
  • 批准号:
    21244002
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Combinatorial Structures in Holomorphic Dynamical Systems
全纯动力系统中的组合结构
  • 批准号:
    0701557
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Contact and Symplectic Structures and Holomorphic Curves
接触和辛结构以及全纯曲线
  • 批准号:
    0603957
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Extension property of holomorphic maps and complex structures of the target manifolds
全纯映射的可拓性质和目标流形的复杂结构
  • 批准号:
    17540094
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了