Themes in Holomorphic Low-Dimensional Dynamics

全纯低维动力学主题

基本信息

  • 批准号:
    1901357
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Theory of Dynamical systems studies the long-term behavior of trajectories described by a certain iteration procedure, and the way this phase portrait depends on the parameters of the system. Very interesting fractal objects may appear as phase and parameter diagrams for such systems. The principal investigator focuses on complex low-dimensional dynamical systems described by simple quadratic equations in this project. Despite simplicity of the description, these systems are known to display complicated chaotic behavior serving as a good model for various phenomena that appear in celestial mechanics, fluid dynamics, biology, and other branches of natural science. The activity will result in deeper insights into small scale structure of dynamical systems, in training of highly qualified postdocs and graduate students who will apply their skills in academia and industry, in broader interactions between experts in various branches of real and complex dynamics, in publishing a book that would help a broad student and research community to acquire background in the area, in promotion of communication in the field by organizing conferences and scientific programs, giving mini-courses, and maintaining a dynamics web site: http//www.math.stonybrook/dynamics.In this research a broad research program on several intertwined geometric themes of complex low-dimensional dynamics is investigated. The principal investigator will make a gradual transition from the one-dimensional to the two-dimensional world. The principal investigator will pursue several one-dimensional projects unified by the idea of renormalization as a powerful tool of penetrating into small-scale structure of dynamical objects aimed towards complete their classification. They include the Pacman Renormalization Theory, scaling of Mandelbrot limbs, and a priori bounds for infinitely renormalizable quadratic polynomials. The principal investigator will keep exploring the structure of the group of quasisymmetris for various classes of Julia sets and develop a new theory: the dynamics generated by Schwarz reflections in quadrature domains. In two complex dimensions, the principal investigator plans to keep working on the dynamics of dissipative complex Henon maps. Specific themes will include exploring the problem of existence of wandering domains, search for new examples of hyperbolic Henon maps, and description of their structure. The principal investigator also plans to finish the first two volumes of a book "Conformal Geometry and Dynamics of Quadratic Polynomials".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统理论研究的是由一定的迭代过程描述的轨迹的长期行为,而这种阶段描述的方式取决于系统的参数。这种系统的相位图和参数图可能会出现非常有趣的分形对象。本项目主要研究由简单二次方程描述的复杂低维动力系统。尽管描述简单,但众所周知,这些系统显示出复杂的混沌行为,作为天体力学、流体动力学、生物学和其他自然科学分支中出现的各种现象的良好模型。这项活动将使人们对动力系统的小规模结构有更深入的了解,将培养高素质的博士后和研究生,使他们将把他们的技能应用于学术界和工业界,在真实和复杂动力学的各个分支的专家之间进行更广泛的互动,出版一本有助于广大学生和研究团体获得该领域背景的书。为了促进该领域的交流,通过组织会议和科学计划,提供迷你课程和维护一个动力学网站:http//www.math.stonybrook/dynamics.In这项研究是一个广泛的研究计划,研究了复杂低维动力学的几个相互交织的几何主题。首席研究员将从一维世界逐步过渡到二维世界。首席研究员将追求几个一维项目统一的重整化的想法,作为一个强大的工具,渗透到动态对象的小尺度结构,旨在完成他们的分类。它们包括吃豆人重整化理论,Mandelbrot分支的缩放,以及无限重整化二次多项式的先验界。首席研究员将继续探索各种Julia集合的准对称群结构,并发展一个新的理论:正交域中Schwarz反射产生的动力学。在两个复杂的维度上,首席研究员计划继续研究耗散复杂Henon图的动力学。具体的主题将包括探索漫游域的存在问题,寻找双曲Henon地图的新例子,以及对其结构的描述。首席研究员还计划完成《共形几何和二次多项式动力学》一书的前两卷。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pacman renormalization and self-similarity of the Mandelbrot set near Siegel parameters
西格尔参数附近 Mandelbrot 集的 Pacman 重整化和自相似性
Probabilistic Universality in Two-Dimensional Dynamics
二维动力学中的概率普遍性
Hedgehogs in higher dimensions and their applications
高维刺猬及其应用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Lyubich, Mikhail;Radu, Remus;Tanase, Raluca
  • 通讯作者:
    Tanase, Raluca
Structure of partially hyperbolic Hénon maps
部分双曲 Hénon 映射的结构
Schwarz reflections and anti-holomorphic correspondences
施瓦茨反射和反全纯对应
  • DOI:
    10.1016/j.aim.2021.107766
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Seung;M. Lyubich;N. Makarov;S. Mukherjee
  • 通讯作者:
    S. Mukherjee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Lyubich其他文献

Stability and bifurcations for dissipative polynomial automorphisms of $${{\mathbb {C}}^2}$$
  • DOI:
    10.1007/s00222-014-0535-y
  • 发表时间:
    2014-09-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Romain Dujardin;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich
MLC at Feigenbaum points
费根鲍姆点的 MLC
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dzmitry Dudko;Mikhail Lyubich
  • 通讯作者:
    Mikhail Lyubich

Mikhail Lyubich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Lyubich', 18)}}的其他基金

HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
  • 批准号:
    2247613
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
  • 批准号:
    1600519
  • 财政年份:
    2016
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Complex and Real Low Dimensional Dynamics
复杂而真实的低维动力学
  • 批准号:
    1301602
  • 财政年份:
    2013
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Geometric Aspects of Low Dimensional Dynamics
低维动力学的几何方面
  • 批准号:
    1007266
  • 财政年份:
    2010
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Program in Holomorphic Dynamics, Laminations and Hyperbolic Geometry
全纯动力学、叠片和双曲几何课程
  • 批准号:
    0555429
  • 财政年份:
    2006
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Geometric Structures in Holomorphic Dynamics and Teichmuller Theory
全纯动力学中的几何结构和 Teichmuller 理论
  • 批准号:
    0505652
  • 财政年份:
    2005
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
International Conference in Geometry and Dynamical Systems, January 2003 - Cuernavaca, Mexico
几何和动力系统国际会议,2003 年 1 月 - 墨西哥库埃纳瓦卡
  • 批准号:
    0224996
  • 财政年份:
    2002
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Research in Dynamical Systems
动力系统研究
  • 批准号:
    0103646
  • 财政年份:
    2001
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Conference "Around Dynamics"
“围绕动力学”会议
  • 批准号:
    0110251
  • 财政年份:
    2001
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似国自然基金

Skew-holomorphic Jacobi形式的算术
  • 批准号:
    10726030
  • 批准年份:
    2007
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
  • 批准号:
    2247613
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
  • 批准号:
    EP/V026321/1
  • 财政年份:
    2022
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
  • 批准号:
    2144363
  • 财政年份:
    2022
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics of Holomorphic Geometric Structures
全纯几何结构的几何与动力学
  • 批准号:
    2203358
  • 财政年份:
    2022
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Holomorphic maps between Riemann surfaces
黎曼曲面之间的全纯映射
  • 批准号:
    21K03287
  • 财政年份:
    2021
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    2104536
  • 财政年份:
    2021
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Geometry and Topology of Holomorphic Symplectic Varieties
全纯辛簇的几何和拓扑
  • 批准号:
    2134315
  • 财政年份:
    2021
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
  • 批准号:
    20K03505
  • 财政年份:
    2020
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了