SHINE: Prediction of Coronal Mass Ejections and Interplanetary Magnetic Fields Using Advanced Artificial Intelligence Techniques

SHINE:利用先进人工智能技术预测日冕物质抛射和行星际磁场

基本信息

  • 批准号:
    2300341
  • 负责人:
  • 金额:
    $ 57.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Understanding and predicting violent solar eruptions and their effect on Earth is a strategic national priority, as it affects the daily life of human beings, including communication, transportation, power supply systems, national defense, space travel, and more. Due to increasing spatial and temporal resolution of solar instrumentation, researchers are facing tremendous challenges in analyzing massive amounts of space weather data, especially for the operational near real-time utilization. This interdisciplinary project advanced artificial intelligence (AI) based tools to forecast geoeffective coronal mass ejections (CMEs). A graduate student will be supported by this project and undergraduate students will be mentored. This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences and by the Space Weather program.This project supports fundamental research on advanced AI to forecast CMEs and their potential to cause geomagnetic storms near 1 AU. The objectives are to (i) employ AI to predict whether a solar active region will produce a CME and estimate its transit time, mass, and kinetic energy, and (ii) predict the orientation of magnetic clouds (MCs) near 1 AU, based on real time solar observations. Data will be used by graph neural networks (GNNs) and ensemble learning methods to combine the GNNs with other conventional AI techniques to predict orientations of MCs. The project utilizes data from NASA, NOAA, and NSF observatories, including the NSF-funded Global H-alpha Network and Big Bear Solar Observatory. The study will also utilize existing measurements and model results, which will be augmented with additional measurements derived from global coronal field maps as well as non-linear force-free field modeling.This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解和预测强烈的太阳爆发及其对地球的影响是国家的战略重点,因为它影响着人类的日常生活,包括通信、交通、电力供应系统、国防、太空旅行等。随着太阳仪器空间和时间分辨率的不断提高,研究人员在分析海量空间气象数据方面面临着巨大的挑战,特别是在近实时的操作利用方面。这个跨学科项目先进的人工智能(AI)为基础的工具来预测地球有效的日冕物质抛射(cme)。该项目将支持一名研究生,并指导本科生。该项目由地球科学理事会和空间天气计划共同资助,以支持地球科学领域的人工智能/机器学习进展。该项目支持先进人工智能的基础研究,以预测日冕物质抛射及其在1 AU附近引起地磁风暴的可能性。目标是(i)利用人工智能预测太阳活动区域是否会产生日冕物质抛射,并估计其过境时间、质量和动能,以及(ii)基于实时太阳观测预测1 AU附近磁云(mc)的方向。数据将被图神经网络(gnn)和集成学习方法使用,将gnn与其他传统的人工智能技术相结合,以预测mc的方向。该项目利用了来自NASA、NOAA和NSF天文台的数据,包括NSF资助的全球h - α网络和大熊太阳天文台。该研究还将利用现有的测量和模型结果,并将通过全球日冕场图和非线性无力场建模获得额外的测量结果。该项目由地球科学理事会共同资助,旨在支持人工智能/机器学习在地球科学领域的发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving spatial resolution of sunspot HMI images using conditional generative adversarial networks
使用条件生成对抗网络提高太阳黑子 HMI 图像的空间分辨率
  • DOI:
    10.1063/5.0181507
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prianto, Agus;Wibowo, Ridlo Wahyudi;Putri, Gerhana Puannandra;Huda, Ibnu Nurul;Yurchyshyn, Vasyl;Malasan, Hakim Luthfi
  • 通讯作者:
    Malasan, Hakim Luthfi
Prediction of the SYM‐H Index Using a Bayesian Deep Learning Method With Uncertainty Quantification
  • DOI:
    10.1029/2023sw003824
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasser Abduallah;Khalid A. Alobaid;Jason T. L. Wang;Haimin Wang;V. Jordanova;Vasyl Yurchyshyn;Huseyin Cavus;Ju Jing
  • 通讯作者:
    Yasser Abduallah;Khalid A. Alobaid;Jason T. L. Wang;Haimin Wang;V. Jordanova;Vasyl Yurchyshyn;Huseyin Cavus;Ju Jing
Estimating Coronal Mass Ejection Mass and Kinetic Energy by Fusion of Multiple Deep-learning Models
通过融合多个深度学习模型来估计日冕物质抛射质量和动能
  • DOI:
    10.3847/2041-8213/ad0c4a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alobaid, Khalid A.;Abduallah, Yasser;Wang, Jason T. L.;Wang, Haimin;Fan, Shen;Li, Jialiang;Cavus, Huseyin;Yurchyshyn, Vasyl
  • 通讯作者:
    Yurchyshyn, Vasyl
Relationships Between Physical Parameters of Umbral Dots Measured for 12 Sunspot Umbras with the Goode Solar Telescope
  • DOI:
    10.1007/s11207-023-02198-3
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    M. A. Calisir;H. T. Yazici;A. Kilçik;V. Yurchyshyn
  • 通讯作者:
    M. A. Calisir;H. T. Yazici;A. Kilçik;V. Yurchyshyn
Magnetic Relaxation Seen in a Rapidly Evolving Light Bridge in a Sunspot
  • DOI:
    10.3847/1538-4357/ad1ab0
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Song;E. Lim;J. Chae;Y. Kim;Yukio Katsukawa;V. Yurchyshyn
  • 通讯作者:
    D. Song;E. Lim;J. Chae;Y. Kim;Yukio Katsukawa;V. Yurchyshyn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vasyl Yurchyshyn其他文献

Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning
  • DOI:
    10.1007/s11207-024-02385-w
  • 发表时间:
    2024-11-20
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Khalid A. Alobaid;Jason T. L. Wang;Haimin Wang;Ju Jing;Yasser Abduallah;Zhenduo Wang;Hameedullah Farooki;Huseyin Cavus;Vasyl Yurchyshyn
  • 通讯作者:
    Vasyl Yurchyshyn
Observations of fine coronal structures with high-order solar adaptive optics
用高阶太阳自适应光学观测精细日冕结构
  • DOI:
    10.1038/s41550-025-02564-0
  • 发表时间:
    2025-05-27
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Dirk Schmidt;Thomas A. Schad;Vasyl Yurchyshyn;Nicolas Gorceix;Thomas R. Rimmele;Philip R. Goode
  • 通讯作者:
    Philip R. Goode

Vasyl Yurchyshyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vasyl Yurchyshyn', 18)}}的其他基金

High-resolution studies of dynamic processes in the sunspot umbra: Preparing for the era of the Daniel K. Inouye Solar Telescope
太阳黑子本影动态过程的高分辨率研究:为丹尼尔·井上太阳望远镜时代做准备
  • 批准号:
    1614457
  • 财政年份:
    2016
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Standard Grant
Searching for Photospheric Causes of Small-Scale Chromospheric Activity
寻找小规模色球活动的光球原因
  • 批准号:
    1146896
  • 财政年份:
    2012
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Continuing Grant
Space Weather: Short-term Prediction of Solar Flares and Geoeffectiveness of Solar Coronal Mass Ejections
空间天气:太阳耀斑的短期预测和日冕物质抛射的地球效应
  • 批准号:
    0205157
  • 财政年份:
    2002
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Standard Grant
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    EU-Funded
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了