Quantum characters of quantum groups and integrable models

量子群的量子特性和可积模型

基本信息

  • 批准号:
    15540020
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The head investigator made joint research with Wakako Nakai, and firstly presented a conjecture of the expression of the q-characters of the representations of the classical quantum affine algebras associated to the skew Young diagrams in terms of Jacobi-Trudy-type determinant.Secondly, they studied the problem of the combinatorial descriptions of the determinant by the Gessel-Viennot paths and Young tableaux. It turns out that, for A and B types, the rule for Young tableaux is determined using the standard method of the involution between the pair of the intersecting paths, and they are summarized as vertical and horizontal rules; meanwhile, for C and D types, these two rules are insufficient, and other complicated extra rules are necessary.This distinction comes from the one of the form of the generating functions. Then, the problem is to determine these extra rules. Since these rules increases as the size of Young tableaux and there are infinitely many variations, their unified description seemed rather difficult. However, after further studies, it was shown that this extra rules are given by condition for the form of the corresponding paths, namely, the condition that "the paths does not have any odd II-region"; furthermore, this condition is translated to the condition for Young tableaux and gives the unified description of the extra rules. This is the main result during term of the research. The conjecture was proved by Hernandez (2006) for A and B types, and the proof for C and D is left as an important problem.
首席研究员与中井若子共同研究,首先提出了经典量子仿射代数的表示的q-特征标用Jacobi-Trudy型行列式表示的猜想,其次研究了行列式的Gessel-Viennot路径和Young tableaux的组合描述问题。结果表明,对于A和B类,Young tableaux规则是用相交路径对合的标准方法确定的,概括为垂直规则和水平规则;而对于C和D类,这两个规则是不够的,还需要其他复杂的额外规则,这种区别来自于生成函数的形式之一。然后,问题是确定这些额外的规则。由于这些规则随着Young场景的大小而增加,并且有无限多的变化,因此它们的统一描述似乎相当困难。然而,经过进一步的研究,证明了这一额外规则是由相应路径的形式条件给出的,即“路径没有任何奇II-区域”的条件,并将这一条件转化为Young tableaux条件,给出了额外规则的统一描述。这是研究期间的主要结果。埃尔南德斯(2006)对A型和B型证明了该猜想,而对C型和D型的证明则是一个重要的问题。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paths and tableaux desoriptions of Jaccbi-Frudi determinant associated with quartum affine algebras of type Dn
与 Dn 型量子仿射代数相关的 Jaccbi-Frudi 行列式的路径和画面解吸
Paths, tableaux and q-characters of quantum affine algebras : the Cn case
量子仿射代数的路径、画面和 q 字符:Cn 案例
Paths and tableaux descriptions of Jacobi-Trudi determinant associated with quantum affine algebra of type Dn
与 Dn 型量子仿射代数相关的 Jacobi-Trudi 行列式的路径和表格描述
Paths and tableaux desociptims of Jacchi Tradi determinant associated with quantum affine algebras of type Dn
与 Dn 型量子仿射代数相关的 Jacchi Tradi 行列式的路径和画面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKANISHI Tomoki其他文献

NAKANISHI Tomoki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKANISHI Tomoki', 18)}}的其他基金

Representations of quantum groups and quantum integrable systems
量子群和量子可积系统的表示
  • 批准号:
    19540021
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of integrable structure inquanteem integrable model
Quanteem可积模型中的可积结构研究
  • 批准号:
    10640016
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053728/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Research Grant
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    DGECR-2022-00432
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Launch Supplement
Random Systems from Symmetric Functions and Vertex Models
对称函数和顶点模型的随机系统
  • 批准号:
    2153869
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    RGPIN-2022-03093
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetric Functions: Combinatorial Identities and Bijections
对称函数:组合恒等式和双射
  • 批准号:
    RGPIN-2020-04020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Expansions of the Chromatic and Tutte Symmetric Functions
半音对称函数和图特对称函数的扩展
  • 批准号:
    562679-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Symmetric Functions: Combinatorial Identities and Bijections
对称函数:组合恒等式和双射
  • 批准号:
    RGPIN-2020-04020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and combinatorial study on multiple zeta functions from the viewpoint of symmetric functions
从对称函数的角度对多个zeta函数进行算术和组合研究
  • 批准号:
    21K03206
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了