Electrowetting Effects and Nanoscale Transport

电润湿效应和纳米级传输

基本信息

  • 批准号:
    2303574
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging Program in the Division of Chemistry, Professor Paul Bohn and his group at the University of Notre Dame are studying the design, behavior, and possible applications of new artificial materials inspired by Nature, particularly architectures consisting of layered films where each layer has a different pore structure. The work is motivated by applications ranging from molecular separations to catalysis. For example, these materials can selectively remove unwanted components in applications such as beverage clarification, clearance of pathogens from blood, and in controlled release of drugs and highly selective sensors for disease-specific biomarkers. These experiments will establish the know-how to control the wetting characteristics of the liquid on the wall, thereby making it possible to use advanced fluid control concepts in technological applications, such as separations in complex fluids. The work is also coupled with the development of new multi-university programs that cut across disciplinary lines and address specific NSF goals, including the development of a diverse, globally competitive STEM (science, technology, engineering and mathematics) workforce, increased partnerships between academia and industry, and increased economic competitiveness.The project addresses transport in nanoscale confined volumes, which highlights a core set of scientific phenomena - wetting/dewetting, hydrophobicity, stochastic fluctuations in fluid flow, electrokinetics, etc. - that exhibit fundamentally distinct behavior on the nanoscale. The research is organized around two overarching objectives: developing single molecule-based electrokinetic and spectro-electrochemical probes of transport in one-dimensional (1D) nanostructures; and applying these tools to explore the interaction between electrically-modulated wetting phenomena and nanoconfined flows. The first objective will be addressed by fabricating structures to access transport in the ultralow Peclét number regime; developing correlative and frequency-domain measurements to characterize fluid transport and fluid-wall interactions; and implementing these measurement strategies to study electrokinetic flows in confined 1D nanocylinder and nanochannel flow formats. The second objective will be pursued by developing nanoconfined architectures that support electrowetting phenomena; and applying electrowetting principles to control nanoconfined flow in both model systems and in hierarchically-organized, multi-lamellar structures with depth-varying porosity. These experiments will establish the conditions necessary to control the wetting characteristics of the solvent-wall system. Studies will be implemented in a well-defined water-organic solvent interface that can support quantitative electrochemical and spectroscopic experiments capable of reporting on the state of the aqueous-organic interfaces as a function of applied potential. These studies are directed at establishing the design rules, structural motifs, and operating principles needed to achieve a high level of control over molecular transport in nano-confined volumes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像项目的支持下,圣母大学的Paul Bohn教授和他的团队正在研究受大自然启发的新型人工材料的设计、行为和可能的应用,特别是由层状薄膜组成的结构,每层都有不同的孔隙结构。这项工作的动机是应用范围从分子分离到催化。例如,这些材料可以选择性地去除饮料澄清、清除血液中的病原体、控制药物释放和疾病特异性生物标志物的高选择性传感器等应用中不需要的成分。这些实验将建立技术诀窍来控制液体在壁上的润湿特性,从而使在技术应用中使用先进的流体控制概念成为可能,例如复杂流体的分离。这项工作还与新的多大学项目的发展相结合,这些项目跨越了学科界限,并解决了国家科学基金会的具体目标,包括发展多样化的、具有全球竞争力的STEM(科学、技术、工程和数学)劳动力,增加学术界和工业界之间的合作伙伴关系,以及提高经济竞争力。该项目研究的是纳米尺度受限体积内的传输,它强调了一系列核心的科学现象——润湿/脱湿、疏水性、流体流动的随机波动、动力学等——这些现象在纳米尺度上表现出截然不同的行为。该研究围绕两个总体目标组织:在一维(1D)纳米结构中开发基于单分子的电动和光谱电化学输运探针;并应用这些工具来探索电调制润湿现象与纳米约束流之间的相互作用。第一个目标将通过制造以超低peclsamt数制度进入运输的结构来解决;发展相关和频域测量来表征流体输运和流体-壁相互作用;并实施这些测量策略来研究受限一维纳米圆柱体和纳米通道流形式下的电动流动。第二个目标将通过开发支持电润湿现象的纳米结构来实现;并应用电润湿原理来控制模型系统和孔隙度随深度变化的分层组织、多层结构中的纳米约束流动。这些实验将建立必要的条件来控制溶剂-壁系统的润湿特性。研究将在一个定义良好的水-有机溶剂界面中实施,该界面可以支持定量电化学和光谱实验,能够报告水-有机界面的状态作为应用电位的函数。这些研究旨在建立设计规则、结构基序和操作原则,以实现对纳米受限体积内分子运输的高水平控制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metabolic and Oxidative Stress Effects on the Spectroelectrochemical Behavior of Single Pseudomonas aeruginosa Cells.
  • DOI:
    10.1021/cbmi.3c00083
  • 发表时间:
    2023-10-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cutri, Allison R;Shrout, Joshua D;Bohn, Paul W
  • 通讯作者:
    Bohn, Paul W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Bohn其他文献

Paul Bohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Bohn', 18)}}的其他基金

Phase I IUCRC at Notre Dame: Center for Bioanalytic Metrology
圣母大学 IUCCRC 第一阶段:生物分析计量中心
  • 批准号:
    1916601
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Vectorially-Coupled Reaction Networks in Low-Dimensional Nanofluidic Structures
低维纳流体结构中的矢量耦合反应网络
  • 批准号:
    1904196
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Planning Grant: Industry University Cooperative Research Center (IUCRC) for Bioanalytic Metrology (CBM), University of Notre Dame
规划资助:圣母大学生物分析计量学产学合作研究中心(IUCRC)
  • 批准号:
    1747764
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Coupled Transport and Reactions in Low-Dimensional Nanofluidic Structures for Enhanced Chemical Measurements
低维纳米流体结构中的耦合传输和反应以增强化学测量
  • 批准号:
    1404744
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Actively Controlled Transport with Molecular Assemblies
利用分子组装主动控制运输
  • 批准号:
    1111739
  • 财政年份:
    2011
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: IDBR: Development of a Biofluid Transport, Separation and Molecular Analysis System using Microfluidics and a Miniature Mass Spectrometer
合作研究:IDBR:使用微流体和微型质谱仪开发生物流体传输、分离和分子分析系统
  • 批准号:
    0852741
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Actively Controlled Transport with Molecular Assemblies
利用分子组装主动控制运输
  • 批准号:
    0807816
  • 财政年份:
    2008
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Active Control of Transport in Molecular Assemblies
分子组装中运输的主动控制
  • 批准号:
    0652163
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Active Control of Transport in Molecular Assemblies
分子组装中运输的主动控制
  • 批准号:
    0451661
  • 财政年份:
    2005
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Purchase of a Picosecond Fluorescence Spectrometer
购买皮秒荧光光谱仪
  • 批准号:
    9982318
  • 财政年份:
    2000
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208260
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Fabrication of Nanoscale Plastics and Effects on Intestinal Barrier Function In Vitro
纳米塑料的制备及其对体外肠道屏障功能的影响
  • 批准号:
    10675055
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Combining Atomic Force Microscopy with Nanoscale Electrophysiology to Study Li Ion Effects
结合原子力显微镜与纳米级电生理学研究锂离子效应
  • 批准号:
    558060-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Postdoctoral Fellowships
Fabrication of Nanoscale Plastics and Effects on Intestinal Barrier Function In Vitro
纳米塑料的制备及其对体外肠道屏障功能的影响
  • 批准号:
    10524902
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
  • 批准号:
    2208238
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Combining Atomic Force Microscopy with Nanoscale Electrophysiology to Study Li Ion Effects
结合原子力显微镜与纳米级电生理学研究锂离子效应
  • 批准号:
    558060-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Postdoctoral Fellowships
Design of nanoscale light-matter interactions and nonlinear optical effects for applications in quantum technology
量子技术应用中的纳米级光与物质相互作用和非线性光学效应的设计
  • 批准号:
    2611785
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Effects of induced polarisation on nanoscale behaviour of water and ions in ion channel pores and biomimetic nanopores
激发极化对离子通道孔和仿生纳米孔中水和离子纳米级行为的影响
  • 批准号:
    2446176
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Developments of the three dimensional nanoscale analysis for acceleration effects on the interface corrosion of neutron irradiated steels
中子辐照钢界面腐蚀加速效应三维纳米分析研究进展
  • 批准号:
    19K05323
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了