Vectorially-Coupled Reaction Networks in Low-Dimensional Nanofluidic Structures

低维纳流体结构中的矢量耦合反应网络

基本信息

  • 批准号:
    1904196
  • 负责人:
  • 金额:
    $ 50.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Reactions are the central events of chemistry and controlling their behavior and the locations where they occur is at the heart of chemical measurements and making new chemicals. Ideally, scientists want to design reactions so they occur rapidly, make efficient use of all the chemical participants, employ inexpensive chemicals and environmentally friendly conditions, and produce easily-isolated chemical products. In nature, such as in biological cells, these stringent objectives are achieved by spatially-organized reaction networks. Dr. Paul Bohn's research team at the University of Notre Dame mimics nature by designing and developing networks of reactions whose behavior is controlled by electrical stimulus and whose location is defined by the size of the reaction vessel. In their work with electron-transfer reactions, they carefully build specially-designed structures from nanometer-sized materials, whose nature and placement leads to particular, well-defined, and highly efficient reactions occurring in specific locations. Furthermore, electrical control of the location-specific reactions and movement of nearby liquid allows for shuttling of chemical products from one reaction site to another one downstream, where they are used as the chemical starting materials for another defined reaction process. All the reactions are sped up using enzymes, nature's chemical reaction catalysts. The Bohn team is developing an understanding of how electrical voltages can be applied to control the activity of catalysts. The research efforts are integrated with new education and training programs that cut across disciplinary lines within the University of Notre Dame and combine talents from multiple universities. In the process, these activities address specific NSF goals including development of a diverse, globally competitive science-technology-engineering-mathematics workforce; increased partnerships between academia and industry; and improved economic competitiveness.The principal goal of this project supported by the Chemical Measurement and Imaging Program and partial co-funding from the Molecular Separations, Electrochemical Systems, and Process Systems, Reaction Engineering and Molecular Thermodynamics Programs at NSF is to develop networks of spatially-organized redox reactions which can be controlled by electrical signals to manage transport, dictate reactivity, and isolate products. The overall goal is addressed by developing control over delivery of reactant molecules and particles to a reactive site as well as control over reactivity, within zero- and one-dimensional electrochemical nanostructures. The team also combines these nanostructures to develop full three-dimensional control over cascade reactions to produce vectorially-controlled reaction networks (VCRNs). The first objective is the development of high-precision nanoscale architectures to support VCRNs by simultaneous control over transport and reactivity using both metal-insulator multilayer stack-based nanopores and hierarchically-organized assemblies. The second objective explores ways in which electrochemical potential can be used to control activity of enzymes bound to one of the electrodes. Using horseradish peroxidase, HRP, as a model oxidoreductase enzyme, the intrinsic reactivity of the electrode-bound enzyme is followed using a fluorogenic redox reaction that converts a non-fluorescent reactant into fluorescent product within the ultrahigh sensitivity environment of an electrochemical zero-mode waveguide. These capabilities are being combined and tested using a set of stringent single enzyme kinetics experiments, in which the HRP is moved among the available locations and tested for intrinsic reactivity when coupled to an electrochemical potential control signal. The ultimate goal of this work is to leverage control of single reaction events to create a preparative scale capability for VCRNs. To test this capability, two-enzyme electrochemically-modulated reaction systems are being coupled to individual reactions in a spatially coordinated manner and used to deliver the reaction products to a downstream collection point. This project has impact outside the principal discipline of chemical analysis, especially in the general area of cascade reactions - powerful constructs in chemical synthesis that are used, for example, in enzymatic biofuel cells to capture the full electrochemical reducing power of fuel sources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
反应是化学的中心事件,控制其行为和发生的位置是化学测量和制造新化学物质的核心。理想情况下,科学家想设计反应,以便迅速发生,有效地利用所有化学参与者,采用廉价的化学药品和环保条件,并生产易于分离的化学产品。在自然界中,例如在生物细胞中,这些严格的目标是通过空间组织的反应网络实现的。巴黎圣母大学的保罗·博恩(Paul Bohn)博士的研究团队通过设计和开发反应网络,这些反应网络由电刺激控制,其位置由反应容器的大小来定义。在通过电子转移反应的工作中,他们小心地从纳米大小的材料中构建了特殊设计的结构,其性质和放置会导致在特定位置发生的特定,定义明确且高效的反应。此外,对位置特异性反应的电控制和附近液体的移动允许将化学产物从一个反应部位穿梭到另一个下游的另一个反应,它们被用作另一个定义反应过程的化学起始材料。所有反应均使用酶(自然的化学反应催化剂)加速。 Bohn团队正在对如何应用电压来控制催化剂的活性。研究工作与新的教育和培训计划融合在一起,这些计划削减了巴黎圣母院的纪律线,并结合了来自多所大学的才能。在此过程中,这些活动涉及特定的NSF目标,包括开发多样化的,全球竞争性的科学技术工程学 - 会员劳动力;学术界与工业之间的伙伴关系增加;并提高了经济竞争力。该项目的主要目标是由化学测量和成像程序支持以及部分从分子分离,电化学系统和过程系统中获得的部分共同基金,NSF的反应工程和分子热力学程序旨在通过空间构造的重新推动反应的网络来控制电源和iS siptal Revional,以控制和iS iS iS sagnation and iS sance and iS sance and iS sakeation and iS sakeation and iS sage。通过对反应物分子和颗粒传递到反应位点的递送以及对反应性的控制,在零和一维电化学纳米结构内的控制来解决总体目标。 该团队还结合了这些纳米结构,以对级联反应进行完整的三维控制,以产生矢量控制的反应网络(VCRN)。第一个目标是开发高精度的纳米级体系结构,通过使用金属 - 绝缘子多层堆栈的纳米孔和层次构造的组件来同时控制传输和反应性来支持VCRN。第二个目标探讨了可以使用电化学电位来控制与电极之一结合的酶的活性的方法。使用辣根过氧化物酶HRP作为模型氧化还原酶酶,使用荧光氧化还原反应,将电极结合酶的内在反应性转化为将非荧光反应剂转化为荧光反应剂在超高敏感性环境中的荧光产物中的电化学环境中的荧光产物。这些功能是通过一组严格的单个酶动力学实验组合和测试的,其中当可用位置之间移动HRP并在耦合到电化学潜在控制信号时测试了内在反应性。这项工作的最终目的是利用对单个反应事件的控制来为VCRN创建制备量表能力。为了测试该能力,两酶电化学改编的反应系统正在以空间协调的方式耦合到个体反应,并用于将反应产物传递到下游收集点。该项目影响了化学分析的主要学科,尤其是在级联反应的一般领域 - 化学合成的强大结构,例如,在酶生物燃料细胞中使用,以捕获燃料来源的完整电化学还原能力。该奖项通过评估了该奖项,反映了NSF的法定范围,并反映了众所周知的Intellia Infectia Merit and Intelliatial的支持者。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential-Induced Wetting and Dewetting in Hydrophobic Nanochannels for Mass Transport Control
  • DOI:
    10.1016/j.coelec.2022.100980
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Seol Baek;Seung-Ryong Kwon;P. Bohn
  • 通讯作者:
    Seol Baek;Seung-Ryong Kwon;P. Bohn
Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes
  • DOI:
    10.1021/acsami.0c12926
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Baek, Seol;Kwon, Seung-Ryong;Bohn, Paul W.
  • 通讯作者:
    Bohn, Paul W.
Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems.
  • DOI:
    10.1039/d1an01954f
  • 发表时间:
    2021-12-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sundaresan V;Do H;Shrout JD;Bohn PW
  • 通讯作者:
    Bohn PW
Potential-induced wetting and dewetting in pH-responsive block copolymer membranes for mass transport control
用于质量传输控制的 pH 响应性嵌段共聚物膜中的电位诱导润湿和反润湿
  • DOI:
    10.1039/d1fd00048a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kwon, Seung-Ryong;Baek, Seol;Bohn, Paul W.
  • 通讯作者:
    Bohn, Paul W.
Multifunctional nanopore electrode array method for characterizing and manipulating single entities in attoliter-volume enclosures
  • DOI:
    10.1063/5.0101693
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Seol Baek;Allison R. Cutri;Donghoon Han;Seung-Ryong Kwon;Julius Reitemeier;Vignesh Sundaresan;P. Bohn-P.-B
  • 通讯作者:
    Seol Baek;Allison R. Cutri;Donghoon Han;Seung-Ryong Kwon;Julius Reitemeier;Vignesh Sundaresan;P. Bohn-P.-B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Bohn其他文献

Paul Bohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Bohn', 18)}}的其他基金

Electrowetting Effects and Nanoscale Transport
电润湿效应和纳米级传输
  • 批准号:
    2303574
  • 财政年份:
    2023
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Phase I IUCRC at Notre Dame: Center for Bioanalytic Metrology
圣母大学 IUCCRC 第一阶段:生物分析计量中心
  • 批准号:
    1916601
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Planning Grant: Industry University Cooperative Research Center (IUCRC) for Bioanalytic Metrology (CBM), University of Notre Dame
规划资助:圣母大学生物分析计量学产学合作研究中心(IUCRC)
  • 批准号:
    1747764
  • 财政年份:
    2018
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant
Coupled Transport and Reactions in Low-Dimensional Nanofluidic Structures for Enhanced Chemical Measurements
低维纳米流体结构中的耦合传输和反应以增强化学测量
  • 批准号:
    1404744
  • 财政年份:
    2014
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant
Actively Controlled Transport with Molecular Assemblies
利用分子组装主动控制运输
  • 批准号:
    1111739
  • 财政年份:
    2011
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant
Collaborative Research: IDBR: Development of a Biofluid Transport, Separation and Molecular Analysis System using Microfluidics and a Miniature Mass Spectrometer
合作研究:IDBR:使用微流体和微型质谱仪开发生物流体传输、分离和分子分析系统
  • 批准号:
    0852741
  • 财政年份:
    2009
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Actively Controlled Transport with Molecular Assemblies
利用分子组装主动控制运输
  • 批准号:
    0807816
  • 财政年份:
    2008
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Active Control of Transport in Molecular Assemblies
分子组装中运输的主动控制
  • 批准号:
    0652163
  • 财政年份:
    2006
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Active Control of Transport in Molecular Assemblies
分子组装中运输的主动控制
  • 批准号:
    0451661
  • 财政年份:
    2005
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Purchase of a Picosecond Fluorescence Spectrometer
购买皮秒荧光光谱仪
  • 批准号:
    9982318
  • 财政年份:
    2000
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant

相似国自然基金

红土镍钴矿基储能材料制备过程多相反应耦合及分离强化机制研究
  • 批准号:
    22378244
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型变径流化床油转化催化反应过程多尺度耦合建模与多模态鲁棒优化
  • 批准号:
    62373155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分子光开关相变材料光化学反应与传热耦合机理研究
  • 批准号:
    52376050
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高盐环境下厌氧反应器耦合CNT强化偶氮染料生物降解机制
  • 批准号:
    52370067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高温熔炼过程中电-热-反应耦合机理及多工况协同控温增效方法
  • 批准号:
    52306097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Accelerated Development of Pharmaceutical Processes Through Digitally Coupled Reaction Screening and Process Optimisation
通过数字耦合反应筛选和工艺优化加速制药工艺的开发
  • 批准号:
    EP/Z531339/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Research Grant
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
  • 批准号:
    10556664
  • 财政年份:
    2023
  • 资助金额:
    $ 50.1万
  • 项目类别:
NHERF1 regulates MRGPRX2/MrgprB2 responses in mast cells
NHERF1 调节肥大细胞中的 MRGPRX2/MrgprB2 反应
  • 批准号:
    10711042
  • 财政年份:
    2023
  • 资助金额:
    $ 50.1万
  • 项目类别:
Using new Next Generation Sequencing (NGS) approaches to analyze the fidelity of HIV reverse transcription in Endogenous Reverse Transcription reactions (ERT)
使用新的下一代测序 (NGS) 方法来分析内源性逆转录反应 (ERT) 中 HIV 逆转录的保真度
  • 批准号:
    10759845
  • 财政年份:
    2023
  • 资助金额:
    $ 50.1万
  • 项目类别:
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
  • 批准号:
    10715891
  • 财政年份:
    2023
  • 资助金额:
    $ 50.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了