Reliability of efficient approximation schemes for material discontinuities described by functions ofbounded variation

由有界变差函数描述的材料不连续性的有效近似方案的可靠性

基本信息

  • 批准号:
    255461777
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Spaces of functions of bounded variations provide an attractive framework to describe material discontinuities such as damage and fracture. Recently, suitable notions of solution and general existence theories for corresponding evolutionary model problems have been established and numerical methods for discretizing and iteratively solving variational problems involving the total variation norm have been developed and analyzed.In the first funding period of the project, abstract existence results for coupled rate-dependent/rate-independent systems, delamination processes in visco-elastodynamics, and phasefield descriptions of damage evolutions have been investigated analytically. Algorithmic contributions have been made to the iterative solution of model problems on functions of bounded variation, the adaptive approximation of discontinuous functions based on fully computable a~posteriori error estimates, and the convergent finite element simulation of a BV-regularized damage model. Within a second funding period these results will be combined, refined, and extended to complex models describing damage and fracture evolution. The envisaged models capture material discontinuities in BV either directly or as a scaling limit. The planned research includes the derivation of a priori and a posteriori error estimates, the construction of adaptive approximation schemes intertwined with results based on existence theory and Gamma-convergence, and their implementation and application to specific benchmark problems in mechanics. Particular attention will be paid to the reliability of efficient methods, e.g., convergence of suitable time-stepping and adaptive approximation schemes based on variational techniques.
有界变差函数空间为描述材料的不连续性(如损伤和断裂)提供了一个有吸引力的框架。近年来,相应的演化模型问题的解的概念和一般存在性理论已经建立,涉及全变分范数的变分问题的离散化和迭代求解的数值方法也得到了发展和分析。在该项目的第一个资助期,耦合率相关/率无关系统的抽象存在性结果,粘弹性动力学中的分层过程,和损伤演化的相场描述进行了分析研究。在有界变差函数模型问题的迭代求解、基于完全可计算的后验误差估计的间断函数的自适应逼近以及BV正则化损伤模型的收敛有限元模拟等方面都做出了重要贡献。在第二个资助期内,这些结果将被合并、完善并扩展到描述损伤和断裂演化的复杂模型。设想的模型捕捉材料的不连续性BV直接或作为一个缩放限制。计划的研究包括推导先验和后验误差估计,自适应逼近方案的建设与基于存在理论和伽玛收敛的结果交织在一起,以及它们在力学中的具体基准问题的实施和应用。 将特别注意有效方法的可靠性,例如,基于变分技术的合适的时间步进和自适应近似方案的收敛性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sören Bartels其他文献

Professor Dr. Sören Bartels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sören Bartels', 18)}}的其他基金

Approximation of non-smooth optimal convex shapes with applications in optimal insulation and minimal resistance
非光滑最佳凸形状的近似及其在最佳绝缘和最小电阻中的应用
  • 批准号:
    314113144
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Error estimates for elastic flows
弹性流的误差估计
  • 批准号:
    514616861
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Bending plates of nematic liquid crystal elastomers
向列液晶弹性体弯曲板
  • 批准号:
    431470015
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Fine Properties and Applications of Thin-Sheet Folding
薄板折叠的优良特性及应用
  • 批准号:
    441528968
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Towards Provably Efficient Representation Learning in Reinforcement Learning via Rich Function Approximation
RI:小:通过丰富函数逼近实现强化学习中可证明有效的表示学习
  • 批准号:
    2154711
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient approximation and preconditioning strategies for models of swirling flow
旋流流模型的高效逼近和预处理策略
  • 批准号:
    EP/W033801/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
AF: RI: Small: Computationally Efficient Approximation of Stationary Points in Convex and Min-Max Optimization
AF:RI:小:凸和最小-最大优化中驻点的计算高效近似
  • 批准号:
    2007757
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
  • 批准号:
    1752302
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-dimensional efficient approximation based on sampling along rank-1 structures with applications
基于Rank-1结构采样的高维高效近似及其应用
  • 批准号:
    380648269
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
SHF: Small: Developing a Highly Efficient and Accurate Approximation System for Warehouse-Scale Computers with the Sub-dataset Distribution Aware Approach
SHF:小型:采用子数据集分布感知方法为仓库规模计算机开发高效、准确的近似系统
  • 批准号:
    1717388
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational Approximation Approaches for Efficient Clinical Predictions
用于高效临床预测的变分逼近方法
  • 批准号:
    MR/R024847/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CRII: RI: Efficient Structure Learning and Approximation of Networks of Causally Interacting Processes
CRII:RI:因果交互过程网络的有效结构学习和逼近
  • 批准号:
    1566513
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient realizability verification of reactive system specifications without approximation
无需近似即可有效验证反应式系统规范的可实现性
  • 批准号:
    15K15969
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stable, Efficient, Adaptive Algorithms for Approximation and Integration
稳定、高效、自适应的逼近和积分算法
  • 批准号:
    1522687
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了