Error estimates for elastic flows

弹性流的误差估计

基本信息

项目摘要

Thin elastic structures lead to a variety of interesting phenomenaand applications. Often, two energy stable bending states are used to create a quasistationary switching device or to generate mechanical locomotion. For all of these technical developments large deformations of thin elastic objects are important. Their mathematical modeling leads to constrained bending energies in which the constraint captures the resistance to shearing and stretching effects of thin elastic plates or the inextensibility and twist behavior of an elastic rod with small cross section. Different finite element discretizations of such energies have recently been devised. By following ideas for the numerical approximation of harmonic maps, which describe director fields with values in given manifolds, practical and convergent numerical methods were obtained. In parallel research the derivation of error estimates for classes of geometric evolution problems was addressed, which include the Willmore, the mean curvature, and the harmonic map heat flow. Crucial in those developments was the identification of an equivalent formulation of the evolution problems as a nonlinear parabolic system that includes equations for geometric quantities such as the normal field. In this project we aim at bringing the developments together to obtain error estimates for finite element discretizations of time stepping schemes for gradient flows of various bending energies. The motivation for this is twofold: first, this justifies the numerical simulation of natural, strongly damped relaxation dynamics, and second, it leads to error estimates for the approximation of stationary states obtained via certain evolution processes. In addition, this serves as a step towards simulating general dynamical processes that capture inertial effects, e.g., vibrating elastic rods. Other applications include the determination of stationary states of magnetic elastic films and rods.
薄弹性结构导致了各种有趣的现象和应用。通常,两个能量稳定的弯曲状态被用来创建准静止开关装置或产生机械运动。对于所有这些技术发展,薄弹性物体的大变形是重要的。他们的数学模型导致约束弯曲能,其中约束捕获了薄弹性板的剪切和拉伸效应的阻力或小截面弹性杆的不可扩展和扭转行为。这种能量的不同的有限元离散化最近已被设计出来。利用谐波映射的数值逼近思想,给出了具有给定流形中值的方向域的实用且收敛的数值逼近方法。在平行研究中,讨论了几何演化问题(包括Willmore、平均曲率和调和映射热流)的误差估计的推导。在这些发展中至关重要的是确定了演化问题的等效公式,即非线性抛物系统,其中包括诸如法向场等几何量的方程。在这个项目中,我们的目标是将这些发展结合起来,以获得各种弯曲能量梯度流的时间步进格式的有限元离散化的误差估计。这样做的动机是双重的:首先,这证明了自然的、强阻尼的松弛动力学的数值模拟是合理的;其次,它导致了通过某些进化过程获得的稳态近似的误差估计。此外,这可以作为模拟捕获惯性效应的一般动力学过程的一步,例如,振动弹性杆。其他的应用包括测定磁性弹性薄膜和棒的固定状态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sören Bartels其他文献

Professor Dr. Sören Bartels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sören Bartels', 18)}}的其他基金

Approximation of non-smooth optimal convex shapes with applications in optimal insulation and minimal resistance
非光滑最佳凸形状的近似及其在最佳绝缘和最小电阻中的应用
  • 批准号:
    314113144
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Reliability of efficient approximation schemes for material discontinuities described by functions ofbounded variation
由有界变差函数描述的材料不连续性的有效近似方案的可靠性
  • 批准号:
    255461777
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Bending plates of nematic liquid crystal elastomers
向列液晶弹性体弯曲板
  • 批准号:
    431470015
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Fine Properties and Applications of Thin-Sheet Folding
薄板折叠的优良特性及应用
  • 批准号:
    441528968
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
  • 批准号:
    488763
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FUTURE-FLOOD: New estimates of evolving UK flood risk for improved climate resilience
未来洪水:对英国不断变化的洪水风险的新估计,以提高气候适应能力
  • 批准号:
    NE/X014134/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Improving Estimates of Changing Firn Meltwater Storage and Flux in Temperate Glacier Systems
职业:改进对温带冰川系统中冰雪融水储存和通量变化的估计
  • 批准号:
    2239668
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
  • 批准号:
    10797705
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Topological Consequences of Distortion-type Estimates
失真型估计的拓扑后果
  • 批准号:
    2247469
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
  • 批准号:
    2306143
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
  • 批准号:
    2308063
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
al-time epidemiological intelligence to inform control of SARS-CoV-2: improving the precision, validity, and granularity of estimates of the effective reproduction number in Canada
实时流行病学情报为 SARS-CoV-2 的控制提供信息:提高加拿大有效传染数估计的精确度、有效性和粒度
  • 批准号:
    495568
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
  • 批准号:
    2886293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了