Fine Properties and Applications of Thin-Sheet Folding

薄板折叠的优良特性及应用

基本信息

项目摘要

In the first funding period of the research project, the analytical understanding and the reliable numerical approximation of thin-sheet folding processes have been addressed. In particular, a two-dimensional bending-folding model has been derived from a three-dimensional hyper-elastic material description of a pre-damaged plate, a discontinuous Galerkin method has been devised, quasi-optimal error estimates for a corresponding small deflection interface problem have been established, and a precise characterization of the relation of folding angles and curvature quantities along creases has been identified. Further results are subject of ongoing research. In a second funding period specific analytical questions such as the optimality of scaling relations leading to other interface conditions, the understanding of piecewise smooth folding line systems, and the characterization of folding angle discontinuities will be addressed. Besides this, the improvement of the efficiency of basic numerical schemes via acceleration procedures and adaptive local mesh refinement based on a posteriori error estimates will be analyzed. Using the analytical results and new computational methodology, application-related questions including the leverage effect of different folding constructions, the development of new mechanisms based on singular flapping effects, and the determination of unstable critical configurations arising in switching processes of bistable devices will be investigated.
在研究项目的第一个资助期间,薄板折叠过程的分析理解和可靠的数值近似已经解决。特别是,二维弯曲折叠模型已从三维超弹性材料描述的预损伤板,一个不连续的Galerkin方法已被设计出来,准最优误差估计相应的小挠度界面问题已被建立,和一个精确的表征的折叠角和曲率量的关系沿着折痕已被确定。进一步的结果是正在进行的研究的主题。在第二个资金周期的具体分析问题,如最优的缩放关系,导致其他接口条件,分段光滑折叠线系统的理解,和折叠角度不连续的特性将得到解决。除此之外,通过加速程序和基于后验误差估计的自适应局部网格细化,将分析基本数值格式的效率的提高。使用的分析结果和新的计算方法,应用相关的问题,包括不同的折叠结构的杠杆效应,基于奇异扑翼效应的新机制的发展,并确定不稳定的临界配置中出现的开关过程中的MEMS器件将进行调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sören Bartels其他文献

Professor Dr. Sören Bartels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sören Bartels', 18)}}的其他基金

Approximation of non-smooth optimal convex shapes with applications in optimal insulation and minimal resistance
非光滑最佳凸形状的近似及其在最佳绝缘和最小电阻中的应用
  • 批准号:
    314113144
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Reliability of efficient approximation schemes for material discontinuities described by functions ofbounded variation
由有界变差函数描述的材料不连续性的有效近似方案的可靠性
  • 批准号:
    255461777
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Error estimates for elastic flows
弹性流的误差估计
  • 批准号:
    514616861
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Bending plates of nematic liquid crystal elastomers
向列液晶弹性体弯曲板
  • 批准号:
    431470015
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Optical properties and applications of van der Waals mixed-dimentional heterostructures
范德华混合维异质结构的光学性质及应用
  • 批准号:
    22KF0407
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: Knit One, Purl Two, Studies on the Properties of Knitted Fabrics for Advanced Engineering Applications
EAGER:针织一,金银丝二,高级工程应用针织物性能研究
  • 批准号:
    2344589
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Transport properties and device applications of one-dimensional heterostructure nanotubes
一维异质结构纳米管的输运特性及器件应用
  • 批准号:
    22KF0070
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Properties of dense QCD and applications to neutron stars
致密QCD的性质及其在中子星中的应用
  • 批准号:
    2890287
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Real-World Applications of the Antiaromaticity Concept: Assemblies, Synthetic Strategies, and Functional Properties
反芳香性概念的实际应用:组装、合成策略和功能特性
  • 批准号:
    2303851
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PCM-in-PV - PV cells with modified optical and thermal properties for high-efficiency electrical applications
PCM-in-PV - 具有改进的光学和热性能的光伏电池,适用于高效电气应用
  • 批准号:
    EP/Y02821X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Model-theoretic tree properties and their applications
模型理论树的性质及其应用
  • 批准号:
    2246992
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了