Defining Reaction Paths for Chalcogenide Materials Discovery
定义硫族化物材料发现的反应路径
基本信息
- 批准号:2305731
- 负责人:
- 金额:$ 56.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThe use of new materials is essential for societal advancement, and solid state materials are critical to the modern economy. With this project, supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, the principal investigator and his research group develop fundamental principles of synthesis and apply them to the chemistry of metal chalcogenides, which are important in various scientific investigations and technologies. Thereby they pursue challenging new directions, discover and synthesize new materials. The project focuses on controlling reactions leading to solid state chalcogenides to avoid known materials and studying their crystal structure, physical properties, and potential technological impact. This research challenges and enhances scientific understanding in this field of chemistry and improves existing technological applications while impacting new ones. For example, the reseach leads to the discovery of new atomic arrangements and novel semiconductors, quantum materials, and ion-exchange sorbent materials for environmental remediation. The project also significantly impacts the training, problem-solving abilities, and pedagogy of graduate students specializing in solid-state and materials synthesis. It aids in developing a competent workforce that comprehends the role of novel materials as catalysts for cutting-edge science and technology. Moreover, the project presents a range of opportunities for graduate and undergraduate students, particularly those from underrepresented communities, to acquire critical thinking skills that will advance scientific research in the future. PART 2: TECHNICAL SUMMARYThe project, supported by the Solid State and Materials Chemistry Program in NSF’s Division of Materials Research, addresses the development of tools, concepts, and reaction paths, both intellectual and experimental, to prepare new materials rationally. It is centered around fundamental science questions: (a) Can new semiconductors be designed by finding proper reaction paths? (b) Can insights from flux and non-flux reaction studies aid targeted synthesis? (c) Can distinct reaction paths be categorized for generalized synthetic methodologies? (d) Can chalcogenides' diverse motifs lead to enhanced properties? The research pursues new directions that have proven very challenging to date. For example, the pursuit of new phases by a) stuffing aristotype structures (in other words, to create new materials by inserting extra atoms in compounds possessing some of the most common structure types. Aristotype is a high-symmetry crystallographic structure type that can be viewed as an idealized version of a lower-symmetry structure), b) stabilizing novel tellurometallate building blocks in extended structures, c) developing synthesis of mixed anion compounds oxy-chalcogenides in a rational manner using a new kind of flux. These aspects represent the cutting edge of chalcogenide solid-state chemistry. They align with the principal investigator’s ongoing interest in novel physical properties of new compounds beyond mere structural characterizations. The benefits of a successful project are broad insights advancing the cutting edge of solid state and materials chemistry, the discovery of novel materials with attractive physical and chemical properties and potential applications, and new knowledge of reaction paths leading to new chalcogenides.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术总结新材料的使用对于社会发展至关重要,固态材料对现代经济至关重要。在该项目的支持下,在NSF材料研究部的固态和材料化学计划的支持下,首席研究员及其研究小组开发了合成的基本原理,并将其应用于金属硫化基质化的化学,这在各种科学研究和技术中都很重要。因此,他们追求挑战新的方向,发现和综合新材料。该项目着重于控制导致固态葡萄核化的反应,以避免已知的材料并研究其晶体结构,物理特性和潜在的技术影响。这项研究挑战并增强了化学领域的科学理解,并在影响新技术的同时改善了现有的技术应用。例如,该研究导致发现新的原子布置和新颖的半导体,量子材料和离子交换材料,以进行环境修复。该项目还显着影响培训,解决问题的能力以及专门研究固态和材料合成的研究生的教学法。它有助于发展一个有能力的劳动力,该劳动力将新颖材料作为尖端科学和技术的催化剂的作用。此外,该项目为研究生和本科生提供了一系列机会,尤其是来自代表性不足的社区的学生,以获得批判性思维技能,这些技能将在未来推进科学研究。第2部分:技术总结项目,在NSF材料研究部的固态和材料化学计划的支持下,探讨了智力和实验性的工具,概念和反应路径的开发,以合理地准备新材料。它围绕基本科学问题:(a)新的半导体可以通过找到适当的反应路径设计吗? (b)来自通量和非升压反应研究的见解有助于靶向合成吗? (c)可以将不同的反应路径分类为广义合成方法吗? (d)Chalcogenide的潜水基序能否导致增强的性质?该研究追求了迄今为止非常挑战的新方向。例如,a)通过a)填充雅里氏式结构(换句话说,通过在具有一些最常见的结构类型的化合物中插入额外的原子来创建新材料。Aristotype是一种高对称的晶体结构类型,可以将其视为理想的较低的构造构造的理想形式的构造构造的理想形式,b)稳定构造,b)使用一种新的通量以有理方式以合理的方式化合物。这些方面代表了硫酸硫化核化学固态化学的最前沿。他们与主要研究者对新化合物的新型物理特性的持续兴趣保持一致。成功项目的好处是广泛的见解,促进了固态和材料化学的最前沿,具有吸引人的物理和化学特性和潜在应用的新型材料的发现,以及对导致新的Chalcogenides的反应路径的新知识。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛影响来评估,认为这是通过评估来通过评估来获得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mercouri Kanatzidis其他文献
Photo-induced Polaronic Response of SnSe Probed by Ultrafast Multi-THz Spectroscopy
超快多太赫兹光谱探测 SnSe 的光致极化响应
- DOI:
10.1364/up.2022.w4a.17 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Dringoli;M. Sutton;Zhongzhen Luo;Mercouri Kanatzidis;D. Cooke - 通讯作者:
D. Cooke
Role of Stoichiometry in the Growth of Large Pb2P2Se6 Crystals for Nuclear Radiation Detection
化学计量在用于核辐射检测的大型 Pb2P2Se6 晶体生长中的作用
- DOI:
10.1021/acsphotonics.7b01119 - 发表时间:
2017-12 - 期刊:
- 影响因子:7
- 作者:
Yadong Xu;Xu Fu;Hongjian Zheng;Yihui He;Wenwen Lin;Kyle McCall;Zhifu Liu;Sanjib Das;Bruce Wessels;Mercouri Kanatzidis - 通讯作者:
Mercouri Kanatzidis
Photoinduced Phase Change in SnSe Probed by Ultrafast Multi-THz Spectroscopy
超快多太赫兹光谱探测 SnSe 光致相变
- DOI:
10.1109/irmmw-thz50927.2022.9895536 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Dringoli;M. Sutton;Zhongzhen Luo;Mercouri Kanatzidis;D. Cooke - 通讯作者:
D. Cooke
Mercouri Kanatzidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mercouri Kanatzidis', 18)}}的其他基金
Synthesis of Complex and Advanced Chalcogenide Materials
复杂和先进硫族化物材料的合成
- 批准号:
2003476 - 财政年份:2020
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
MRI: Acquisition of A Single Crystal Diffractometer With A Silver Microsource and A Detector Optimized for Silver Radiation
MRI:获取带有银微源和针对银辐射优化的探测器的单晶衍射仪
- 批准号:
1920248 - 财政年份:2019
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Driven Non-Equilibrium Room Temperature Quantum States
EAGER:实现量子飞跃:驱动非平衡室温量子态
- 批准号:
1838507 - 财政年份:2018
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
Solid State Chemistry of Complex Chalcogenides
复杂硫属化物的固态化学
- 批准号:
1708254 - 财政年份:2017
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
Synthesis and Properties of Complex Crystalline and Glassy Metal Chalcogenides
复杂晶态和玻璃态金属硫属化物的合成与性能
- 批准号:
1410169 - 财政年份:2014
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
Solid State Chemistry of Chalcogenides for Materials Discovery
用于材料发现的硫族化物固态化学
- 批准号:
1104965 - 财政年份:2011
- 资助金额:
$ 56.4万 - 项目类别:
Continuing Grant
NSF/DOE Thermoelectrics Partnership, Collaborative Proposal: Project SEEBECK - Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge
NSF/DOE 热电伙伴关系,协作提案:SEEBECK 项目 - 通过参与协作研究和共享知识有效节约能源
- 批准号:
1048728 - 财政年份:2011
- 资助金额:
$ 56.4万 - 项目类别:
Continuing Grant
ARI-MA: Design and Growth of High Density, Wide Band-Gap Semiconductor Materials
ARI-MA:高密度、宽带隙半导体材料的设计和生长
- 批准号:
0938810 - 财政年份:2009
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
Solid State Chemistry of Crystalline and Glassy Chalcogenides
晶体和玻璃态硫属化物的固态化学
- 批准号:
0801855 - 财政年份:2008
- 资助金额:
$ 56.4万 - 项目类别:
Continuing Grant
2008 Gordon Research Conference on Solid State Chemistry, New London, NH, July 27 - August 1, 2008
2008 年戈登固态化学研究会议,新罕布什尔州新伦敦,2008 年 7 月 27 日至 8 月 1 日
- 批准号:
0803573 - 财政年份:2008
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
相似国自然基金
全解水光催化剂析氢析氧金属位点活化、反应路径设计及动力学调控
- 批准号:52371173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于自由基反应路径的生物质SCWG制氢反应机理与调控机制研究
- 批准号:52306226
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
厌氧膜生物反应器产甲烷路径与膜污染行为的响应机制及调控策略
- 批准号:52300024
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
原位谱学研究电催化碳-氮耦合制备尿素的反应路径
- 批准号:22374141
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
水相稳定醛糖差向异构固体酸催化剂设计与反应路径研究
- 批准号:22372014
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 56.4万 - 项目类别:
Standard Grant
Novel nanocarbon-based materials for in-depth and efficient gas decontamination through combined solid-state reaction, heterogeneous catalysis and adsorption paths
新型纳米碳基材料通过固态反应、多相催化和吸附路径相结合,实现深度、高效的气体净化
- 批准号:
RGPIN-2020-07019 - 财政年份:2022
- 资助金额:
$ 56.4万 - 项目类别:
Discovery Grants Program - Individual
Novel nanocarbon-based materials for in-depth and efficient gas decontamination through combined solid-state reaction, heterogeneous catalysis and adsorption paths
新型纳米碳基材料通过固态反应、多相催化和吸附路径相结合,实现深度、高效的气体净化
- 批准号:
RGPIN-2020-07019 - 财政年份:2021
- 资助金额:
$ 56.4万 - 项目类别:
Discovery Grants Program - Individual
Novel nanocarbon-based materials for in-depth and efficient gas decontamination through combined solid-state reaction, heterogeneous catalysis and adsorption paths
新型纳米碳基材料通过固态反应、多相催化和吸附路径相结合,实现深度、高效的气体净化
- 批准号:
DGECR-2020-00486 - 财政年份:2020
- 资助金额:
$ 56.4万 - 项目类别:
Discovery Launch Supplement
Novel nanocarbon-based materials for in-depth and efficient gas decontamination through combined solid-state reaction, heterogeneous catalysis and adsorption paths
新型纳米碳基材料通过固态反应、多相催化和吸附路径相结合,实现深度、高效的气体净化
- 批准号:
RGPIN-2020-07019 - 财政年份:2020
- 资助金额:
$ 56.4万 - 项目类别:
Discovery Grants Program - Individual