Quantum Kinetics for Quantum Friction: a Materials Perspective
量子摩擦的量子动力学:材料视角
基本信息
- 批准号:2306203
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The relative displacement between two objects in close proximity, but not touching, gives rise to friction, a ubiquitous phenomenon resulting in energy dissipation, which often leads to reduced efficiency and reliability of devices. The source of this friction is quantum vacuum fluctuations on the surfaces of the objects, referred to as quantum friction. This project focuses on quantum friction, and its general scope is to advance the fundamental understanding of time-dependent processes stemming from the quantum vacuum. The goal is to develop a theory that can give insights and guidance into ultrasensitive force and torque experiments that are important for new pathways for harnessing the quantum vacuum. The project promotes in-depth studies of novel materials and their optical response properties by finding effective control “knobs” for enhancing or inhibiting quantum friction. Training students and postdocs is an important part of this research, which is an excellent platform for new professionals working on cutting edge problems in a collaborative team. Creating an environment to involve high school students, which is also envisioned for this research, promises to attract motivated young people to help with their college paths in science or engineering.This research aims at developing a unified kinetic approach that takes into account on equal footing time, velocity, distance separation, and optical response properties of the objects that are in relative motion. The method relies on projection density operator concepts through which geometric phases, transition rates, decoherence, and dephasing enter into quantum friction phenomena. Advanced theoretical methods will also be developed to calculate the optical response of materials to be incorporated in the kinetic description of quantum friction. The project aims to broaden the meaning of Berry-like geometric phases in nonunitary dissipative processes associated with vacuum electromagnetic fluctuations at zero and finite temperatures. In-depth studies of the optical response of topological and other materials, which is important especially for uncovering novel plasmon modes-atomic structures relations, will be carried out in order to uncover practical “knobs” for quantum friction control. In addition to the force, quantum friction signatures will be identified in characteristics, such as geometric phases and transition rates, to expand and diversify future experimental endeavors in measuring this elusive effect. This research will also give new insights for experimental studies concerning ultrasensitive force and torque detection as well as detection of single spins by magnetic resonance force microscopy among others. Such precise experiments and their proper interpretation are of great relevance for harnessing the empty vacuum for useful purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
两个物体之间的相对位移非常接近,但不接触,会产生摩擦,这是一种普遍存在的现象,导致能量耗散,这通常会导致设备的效率和可靠性降低。这种摩擦的来源是物体表面的量子真空涨落,称为量子摩擦。该项目的重点是量子摩擦,其总体范围是推进对量子真空产生的时间依赖过程的基本理解。我们的目标是开发一种理论,可以为超灵敏力和扭矩实验提供见解和指导,这些实验对于利用量子真空的新途径非常重要。该项目通过寻找增强或抑制量子摩擦的有效控制“旋钮”,促进对新型材料及其光学响应特性的深入研究。培训学生和博士后是这项研究的重要组成部分,这是一个很好的平台,为新的专业人士在一个协作团队中工作的前沿问题。创造一个让高中生参与的环境,这也是本研究的设想,有望吸引有动力的年轻人来帮助他们在科学或工程学院的道路。本研究的目的是开发一个统一的动力学方法,在平等的基础上考虑到时间,速度,距离分离,和光学响应特性的对象,在相对运动。该方法依赖于投影密度算子的概念,通过几何相位,跃迁率,退相干和退相进入量子摩擦现象。先进的理论方法也将被开发,以计算材料的光学响应纳入量子摩擦的动力学描述。该项目的目的是扩大在零和有限温度下与真空电磁波动相关的非幺正耗散过程中的Berry-like几何相位的含义。将深入研究拓扑和其他材料的光学响应,这对于揭示新的等离子体激元模式-原子结构关系特别重要,以揭示量子摩擦控制的实用“旋钮”。除了力之外,量子摩擦特征还将在几何相位和跃迁速率等特征中被识别,以扩大和多样化未来测量这种难以捉摸的效应的实验努力。这项研究还将为有关超灵敏力和扭矩检测以及磁共振力显微镜等检测单自旋的实验研究提供新的见解。这种精确的实验及其正确的解释对于利用空的真空用于有用的目的具有重要意义。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lilia Woods其他文献
Lilia Woods的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lilia Woods', 18)}}的其他基金
GOALI: Synergistic Computational, Experimental, and Thermoelectric Device-related Research for Multinary Chalcogenides with Earth-Abundant Constituents
目标:具有地球丰富成分的多元硫属化物的协同计算、实验和热电装置相关研究
- 批准号:
1748188 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SusChEM/GOALI: Efficient Thermoelectricity with Low-cost Natural Minerals: a Synergistic Computational, Experimental, and Device Development Approach
SusChEM/GOALI:利用低成本天然矿物实现高效热电:协同计算、实验和设备开发方法
- 批准号:
1400957 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Granular Nanocomposites for Improved Thermoelectric Performance: Theory and Experiment
用于改善热电性能的颗粒纳米复合材料:理论与实验
- 批准号:
0932526 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
- 批准号:
DP240102418 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Discovery Projects
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Understanding the Impact of Dephosphorylation Kinetics and Adapter Specificity on Synthetic T Cell Receptor Signaling and Function
职业:了解去磷酸化动力学和接头特异性对合成 T 细胞受体信号传导和功能的影响
- 批准号:
2339172 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Solvent Reorganization Effects on the Kinetics of Electrochemical Hydrogen Evolution
溶剂重组对电化学析氢动力学的影响
- 批准号:
2350501 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Resolving the Shortcomings in Modern NH3 Kinetics Models using Detailed Species Time Histories and Direct Rate Measurements
使用详细的物种时间历史和直接速率测量解决现代 NH3 动力学模型的缺点
- 批准号:
2308433 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
- 批准号:
2304861 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant