CDS&E: Probabilistic modeling of fields and point clouds in cosmology

CDS

基本信息

  • 批准号:
    2307109
  • 负责人:
  • 金额:
    $ 34.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Cosmological observations provide a unique window into fundamental physics, such as the ultra-high energy physics of the primordial universe. Upcoming galaxy surveys such as Rubin Observatory will produce vast amounts of data, but the extraction of fundamental physics from this data will be difficult. To fully exploit the statistical sensitivity of upcoming experiments, new methods which leverage high performance computing and machine learning must be developed. In this project scientists from the University of Wisconsin, Madison will make use of novel techniques from probabilistic machine learning and apply them to the dark matter and galaxy distribution of the universe. Using these tools, the team will be able to measure fundamental physics parameters from galaxy data more precisely than was previously possible. This research project will also provide exciting research opportunities for several undergraduate students from UW Madison's URS program, which supports and encourages students with non-traditional backgrounds, contribute to outreach efforts, and improve education in the important field of artificial intelligence for science. The scientific goal of this project is to develop normalizing flows to model two types of cosmological data, as well as their statistical connection: field level data, such as the non-linear matter field, and point cloud data such as halos and galaxies. For this task, the team will adapt recently developed normalizing flows for point clouds. Similar tasks appear in 3-dimensional computer vision and molecular design, but cosmology has unique properties that will feed into new machine learning developments. The team will design a scale decomposition to treat very large point clouds and will then use their normalizing flows for two important applications in cosmology. The first application will be to generate super-resolution simulations, where a conditional normalizing flow is used to augment the resolution of dark matter simulations, as well as to include baryonic physics. The second application will be to use the point cloud flow to establish a probabilistic dark matter to galaxy connection in a forward modeling framework, which will improve the reconstruction of cosmological initial conditions with respect to previous approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宇宙学观测为了解基础物理提供了一个独特的窗口,例如原始宇宙的超高能物理。即将到来的星系调查,如鲁宾天文台,将产生大量数据,但从这些数据中提取基础物理将是困难的。为了充分利用即将到来的实验的统计敏感性,必须开发利用高性能计算和机器学习的新方法。在这个项目中,来自威斯康星大学麦迪逊分校的科学家将利用概率机器学习的新技术,并将它们应用于宇宙的暗物质和星系分布。使用这些工具,该团队将能够比以前更精确地从星系数据中测量基本物理参数。该研究项目还将为威斯康星大学麦迪逊分校URS项目的几名本科生提供令人兴奋的研究机会,该项目支持和鼓励具有非传统背景的学生,为推广努力做出贡献,并改善科学人工智能重要领域的教育。该项目的科学目标是开发归一化流动来模拟两种类型的宇宙学数据及其统计联系:场级数据,如非线性物质场,以及点云数据,如晕和星系。对于这项任务,该团队将适应最近开发的点云归一化流动。类似的任务也出现在三维计算机视觉和分子设计中,但宇宙学具有独特的特性,这些特性将用于新的机器学习开发。该团队将设计一种尺度分解来处理非常大的点云,然后将它们的归一化流动用于宇宙学中的两个重要应用。第一个应用将是产生超分辨率模拟,其中条件归一化流被用来增加暗物质模拟的分辨率,以及包括重子物理。第二个应用将是利用点云流在正向模拟框架中建立暗物质到星系的概率连接,这将改善与以前方法相比的宇宙初始条件的重建。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moritz Muenchmeyer其他文献

Moritz Muenchmeyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
  • 批准号:
    10622713
  • 财政年份:
    2023
  • 资助金额:
    $ 34.97万
  • 项目类别:
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
  • 批准号:
    10742133
  • 财政年份:
    2023
  • 资助金额:
    $ 34.97万
  • 项目类别:
Uncertainty Modeling of Learning to Enable Probabilistic Perception
学习的不确定性建模以实现概率感知
  • 批准号:
    2305532
  • 财政年份:
    2023
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Standard Grant
Probabilistic Multiscale Modeling of the Tumor Microenvironment
肿瘤微环境的概率多尺度建模
  • 批准号:
    10586545
  • 财政年份:
    2023
  • 资助金额:
    $ 34.97万
  • 项目类别:
CAREER: Modeling Language Evolution via Deep Probabilistic Factorization
职业:通过深度概率分解建模语言演化
  • 批准号:
    2146151
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Continuing Grant
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
  • 批准号:
    10546337
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10705838
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10689580
  • 财政年份:
    2022
  • 资助金额:
    $ 34.97万
  • 项目类别:
Probabilistic Modeling of Spatio-temporally Varying Natural Hazard and Risk
时空变化的自然灾害和风险的概率模型
  • 批准号:
    RGPIN-2016-04814
  • 财政年份:
    2021
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal security patch management tool design based on probabilistic modeling and analysis
基于概率建模与分析的最优安全补丁管理工具设计
  • 批准号:
    21K17742
  • 财政年份:
    2021
  • 资助金额:
    $ 34.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了