Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications
非线性控制系统理论研究:李亚普诺夫函数、稳定性和工程应用
基本信息
- 批准号:0424011
- 负责人:
- 金额:$ 17.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract DMS-0424011, MalisoffLouisiana State UniversityResearch in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, andEngineering ApplicationsThis research will provide new Lyapunov-based stability methods inmathematical control theory, which are based on the systematic use ofgeneralized differentials, optimal control, and the input-to-statestability framework. In particular, the project will derive and apply newfeedback stabilization techniques for nonautonomous systems andunderactuated mechanical systems on manifolds that are not tractable bythe existing theory. Other related lines of research to be pursuedinclude: a) the explicit construction of time-varying control-Lyapunovfunctions, b) the analysis of bifurcation points of discontinuousfeedbacks, c) approximation and regularity theory for Lyapunov functions,and d) the construction of state estimators for output stable systems.By developing powerful new engineering and mathematical techniques, thisproject will make it possible to analyze a large class of importantstability problems across many disciplines using a single, systematic,user-friendly approach. Feedback stabilization is used in many areas,including engineering (e.g., control of autonomous air and surfacevehicles for military surveillance and reconnaissance missions) andsystems biology (e.g., analysis of cell receptors in models of viralinfection). The research will promote learning by supporting graduatestudent research assistants, who will apply and validate the projectmethods in a mechanical engineering control system laboratory. The projectwill be carried out in an institution that traditionally attracts manyminorities, and special efforts will be made to recruit researchassistants from under-represented groups.
摘要DMS-0424011,Malisoff路易斯安那州立大学非线性控制系统理论研究:李雅普诺夫函数,稳定化和工程应用本研究将提供新的基于李雅普诺夫的稳定性方法在数学控制理论,这是基于系统使用广义微分,最优控制,和输入到状态稳定性框架。特别是,该项目将推导和应用新的反馈稳定技术的非自治系统和欠驱动的机械系统的流形上是不听话的现有理论。其他相关的研究领域包括:a)时变控制李雅普诺夫函数的显式构造,B)不连续反馈的分叉点分析,c)李雅普诺夫函数的逼近和正则性理论,d)输出稳定系统的状态估计器的构造。通过发展强大的新工程和数学技术,这个项目将使人们有可能分析一个大类的重要的稳定性问题,在许多学科使用一个单一的,系统的,用户友好的方法。反馈稳定用于许多领域,包括工程(例如,用于军事监视和侦察任务的自主空中和地面交通工具的控制)和系统生物学(例如,病毒感染模型中细胞受体的分析)。本研究将通过支持研究生研究助理来促进学习,研究生研究助理将在机械工程控制系统实验室应用和验证项目方法。该项目可以在一个传统上吸引许多少数群体的机构中进行,并将作出特别努力,从代表性不足的群体中招聘研究助理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Malisoff其他文献
Remarks on output feedback stabilization of two-species chemostat models
- DOI:
10.1016/j.automatica.2010.06.035 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Frédéric Mazenc;Michael Malisoff - 通讯作者:
Michael Malisoff
Interval contractor-based reference governor for a class of uncertain nonlinear systems
一类不确定非线性系统的基于区间收缩的参考调节器
- DOI:
10.1016/j.automatica.2025.112407 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.900
- 作者:
Rick Schieni;Michael Malisoff;Laurent Burlion - 通讯作者:
Laurent Burlion
Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing lagrangians, eikonal equations, and shape-from-shading
- DOI:
10.1007/s00030-003-1051-8 - 发表时间:
2004-02-01 - 期刊:
- 影响因子:1.200
- 作者:
Michael Malisoff - 通讯作者:
Michael Malisoff
Michael Malisoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Malisoff', 18)}}的其他基金
Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
- 批准号:
2308282 - 财政年份:2023
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009659 - 财政年份:2020
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Sequential Predictors for Partial Differential Equation and Delay Systems: Designs, Theory, and Applications
合作研究:偏微分方程和延迟系统的序贯预测器:设计、理论和应用
- 批准号:
1711299 - 财政年份:2017
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
- 批准号:
1408295 - 财政年份:2014
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Robustness of Networked Model Predictive Control Satisfying Critical Timing Constraints
协作研究:满足关键时序约束的网络模型预测控制的鲁棒性
- 批准号:
1436774 - 财政年份:2014
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Theory, Methods, and Applications of Nonlinear Control Systems with Time Delays
时滞非线性控制系统的理论、方法和应用
- 批准号:
1102348 - 财政年份:2011
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Autonomous Control and Sensing Algorithms for Surveying the Impacts of Oil Spills on Coastal Environments
合作研究:RAPID:用于调查溢油对沿海环境影响的自主控制和传感算法
- 批准号:
1056255 - 财政年份:2010
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
MSPA-ENG: Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications II
MSPA-ENG:非线性控制系统理论研究:李雅普诺夫函数、稳定性和工程应用 II
- 批准号:
0708084 - 财政年份:2007
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308639 - 财政年份:2023
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
- 批准号:
2308640 - 财政年份:2023
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
- 批准号:
2210320 - 财政年份:2022
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130695 - 财政年份:2022
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Balancing: Reduced Models and Control
合作研究:非线性平衡:简化模型和控制
- 批准号:
2130727 - 财政年份:2022
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
- 批准号:
2210315 - 财政年份:2022
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Real-Time Iteration Governor for Constrained Nonlinear Model Predictive Control
协作研究:约束非线性模型预测控制的实时迭代调节器
- 批准号:
1904394 - 财政年份:2019
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Real-Time Iteration Governor for Constrained Nonlinear Model Predictive Control
协作研究:约束非线性模型预测控制的实时迭代调节器
- 批准号:
1904441 - 财政年份:2019
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Nonlinear Modal Decoupling and Control for Resilient Interconnected Power Systems
职业:弹性互联电力系统非线性模态解耦和控制的综合研究和教育
- 批准号:
1553863 - 财政年份:2016
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant
Collaborative Research: Active Control of Nonlinear Flow-Induced Instability of Wind Turbine Blades under Stochastic Perturbations
合作研究:随机扰动下风力机叶片非线性流致失稳的主动控制
- 批准号:
1462646 - 财政年份:2015
- 资助金额:
$ 17.11万 - 项目类别:
Standard Grant