MSPA-ENG: Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications II
MSPA-ENG:非线性控制系统理论研究:李雅普诺夫函数、稳定性和工程应用 II
基本信息
- 批准号:0708084
- 负责人:
- 金额:$ 18.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop highly innovative stabilization theory for important classes of nonlinear dynamical systems in mathematical control theory, based on the systematic use of Lyapunov functions, generalized differentials, and the input-to-state stability framework. The ultimate goal is to provide a bold and far-reaching unification of the various existing constructions of time-varying feedback stabilizers and Lyapunov functions, which will apply to very general systems with mixtures of discrete and continuous time scales and outputs, including nonholonomic systems that cannot be globally stabilized by continuous time invariant feedbacks. Such systems are ubiquitous in science. Other topics to be pursued include (a) quantifying the effects of introducing feedback delays into a priori stable closed loop systems, (b) analysis of bifurcation points of discontinuous feedbacks, (c) tracking problems for engineering models with uncertain model parameters, (d) explicit constructions of Lyapunov functions and smooth repulsive feedback stabilizers for systems with measurement uncertainty, and (e) quasi time optimal feedback stabilization. By developing powerful new engineering and mathematical techniques, this work will make it possible to analyze a large class of important stability problems across many disciplines using a single, systematic and user-friendly approach.Mathematical control theory and optimization provide the theoretical foundations that undergird many modern technologies including aeronautics, biotechnology, communications networks, manufacturing, and models of climate change. Feedback stabilization is used in many of these areas, ranging from electromechanical engineering to biomathematics. This innovative project will strive for breakthroughs rather than incremental improvements. Its methods will lead to feedback stabilizers for significant classes of control systems that are beyond the scope of the known continuous feedback stabilization techniques but which commonly arise in engineering, such as systems with time delays and multiple time scales for which only partial information is available. This project will suggest and explore creative and original feedback concepts in several applications that are of compelling engineering interest, such as chemostats (which model microorganisms competing for limiting nutrients) and micro-electromechanical relays (which are used to open or close connections in electric circuits). The research will promote learning by supporting research assistants, who will apply and validate the methods in a control system laboratory. The work will be carried out at an institution that traditionally attracts many minorities, and special efforts will be made to recruit qualified research assistants from under-represented groups.
该项目将基于李雅普诺夫函数、广义微分和输入到状态稳定性框架的系统使用,为数学控制理论中重要的非线性动力系统类开发高度创新的稳定理论。最终目标是对现有的各种时变反馈稳定器和李雅普诺夫函数的结构进行大胆而深远的统一,这将适用于具有离散和连续时间尺度和输出混合的非常一般的系统,包括不能通过连续时不变反馈全局稳定的非完整系统。这样的系统在科学中无处不在。其他要研究的主题包括(a)量化将反馈延迟引入先验稳定闭环系统的影响,(b)不连续反馈的分岔点分析,(c)具有不确定模型参数的工程模型的跟踪问题,(d)具有测量不确定性系统的Lyapunov函数和光滑排斥反馈稳定器的显式构造,以及(e)准时间最优反馈稳定化。通过开发强大的新工程和数学技术,这项工作将使使用单一、系统和用户友好的方法分析跨许多学科的大量重要稳定性问题成为可能。数学控制理论和优化为许多现代技术提供了理论基础,包括航空、生物技术、通信网络、制造业和气候变化模型。从机电工程到生物数学,反馈稳定技术在许多领域都有应用。这一创新项目将力求突破,而不是渐进式改进。它的方法将导致反馈稳定器的重要类别的控制系统,超出了已知的连续反馈稳定技术的范围,但通常出现在工程中,如系统的时间延迟和多时间尺度,只有部分信息是可用的。该项目将提出并探索在几个具有引人注目的工程兴趣的应用中具有创造性和原创性的反馈概念,例如化学调节器(模拟微生物竞争限制营养物质)和微机电继电器(用于打开或关闭电路中的连接)。这项研究将通过支持研究助理来促进学习,他们将在控制系统实验室中应用和验证这些方法。这项工作将在一个传统上吸引许多少数民族的机构进行,并将作出特别努力,从代表性不足的群体中征聘合格的研究助理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Malisoff其他文献
Remarks on output feedback stabilization of two-species chemostat models
- DOI:
10.1016/j.automatica.2010.06.035 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Frédéric Mazenc;Michael Malisoff - 通讯作者:
Michael Malisoff
Interval contractor-based reference governor for a class of uncertain nonlinear systems
一类不确定非线性系统的基于区间收缩的参考调节器
- DOI:
10.1016/j.automatica.2025.112407 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.900
- 作者:
Rick Schieni;Michael Malisoff;Laurent Burlion - 通讯作者:
Laurent Burlion
Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing lagrangians, eikonal equations, and shape-from-shading
- DOI:
10.1007/s00030-003-1051-8 - 发表时间:
2004-02-01 - 期刊:
- 影响因子:1.200
- 作者:
Michael Malisoff - 通讯作者:
Michael Malisoff
Michael Malisoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Malisoff', 18)}}的其他基金
Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
- 批准号:
2308282 - 财政年份:2023
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009659 - 财政年份:2020
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: Sequential Predictors for Partial Differential Equation and Delay Systems: Designs, Theory, and Applications
合作研究:偏微分方程和延迟系统的序贯预测器:设计、理论和应用
- 批准号:
1711299 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
- 批准号:
1408295 - 财政年份:2014
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: Robustness of Networked Model Predictive Control Satisfying Critical Timing Constraints
协作研究:满足关键时序约束的网络模型预测控制的鲁棒性
- 批准号:
1436774 - 财政年份:2014
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Theory, Methods, and Applications of Nonlinear Control Systems with Time Delays
时滞非线性控制系统的理论、方法和应用
- 批准号:
1102348 - 财政年份:2011
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Autonomous Control and Sensing Algorithms for Surveying the Impacts of Oil Spills on Coastal Environments
合作研究:RAPID:用于调查溢油对沿海环境影响的自主控制和传感算法
- 批准号:
1056255 - 财政年份:2010
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications
非线性控制系统理论研究:李亚普诺夫函数、稳定性和工程应用
- 批准号:
0424011 - 财政年份:2004
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
相似国自然基金
CircMAPK8介导m6A修饰阅读器YTHDF2维持TGFb/ENG mRNAs 稳定性促进子痫前期发病的研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
ENG/GLUT1相互作用在糖尿病认知功能障碍中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
circRNA_88704/miR-138-5p/ENG轴调控糖尿病心肌纤维化的分子机制
- 批准号:81870173
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Scholarship of Pedagogy & Application of Research Knowledge in Engineering (SPARK-ENG) Pilot
教育学奖学金
- 批准号:
563219-2021 - 财政年份:2021
- 资助金额:
$ 18.79万 - 项目类别:
University Undergraduate Student Research Awards
NSF/ENG/ECCS-BSF: Collaborative Research: Random Channel Cryptography
NSF/ENG/ECCS-BSF:协作研究:随机通道密码学
- 批准号:
1808976 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
NSF/ENG/ECCS-BSF: Collaborative Research: Foundations of secure multi-agent networked systems
NSF/ENG/ECCS-BSF:协作研究:安全多代理网络系统的基础
- 批准号:
1809076 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
NSF/ENG/ECCS-BSF: Collaborative Research: Foundations of secure multi-agent networked systems
NSF/ENG/ECCS-BSF:协作研究:安全多代理网络系统的基础
- 批准号:
1809315 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
NSF/ENG/ECCS-BSF: Collaborative Research: Random Channel Cryptography
NSF/ENG/ECCS-BSF:协作研究:随机通道密码学
- 批准号:
1809099 - 财政年份:2018
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
- 批准号:
1711801 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
- 批准号:
1711798 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical platforms
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新的光学和光机械平台
- 批准号:
1711451 - 财政年份:2017
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative Research: MPSA-ENG: Interplay of Biosensing and Locomotion in Confined Microfluidic Environments
合作研究:MPSA-ENG:受限微流体环境中生物传感和运动的相互作用
- 批准号:
0852753 - 财政年份:2008
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant
Collaborative research MSPA-ENG: Dynamics of interfacial domains
合作研究 MSPA-ENG:界面域动力学
- 批准号:
0730626 - 财政年份:2007
- 资助金额:
$ 18.79万 - 项目类别:
Standard Grant














{{item.name}}会员




