Collaborative Research: Robustness of Networked Model Predictive Control Satisfying Critical Timing Constraints

协作研究:满足关键时序约束的网络模型预测控制的鲁棒性

基本信息

  • 批准号:
    1436774
  • 负责人:
  • 金额:
    $ 16.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Connecting multiple actuators, controllers, and sensors over shared data networks is a common means of reducing cost and increasing maintainability in modern industrial applications, including automobiles, aircraft, and manufacturing facilities. In most of these applications precise timing is necessary for proper system function, and timing deviations have the potential to cause detrimental and even life-threatening deterioration of performance. However it is inherent to shared networks that contention may occur, meaning that more than one connected device wants to transmit data over the network at the same time. This project will develop real-time networked controllers that resolve contention while achieving desired control objectives. Furthermore, they will be robust to perturbations of the physical system and the network itself. The focus of the project is on network architectures that are common in industry, and the results will apply particularly to automotive control and robotic applications. As reflected in the expertise of the PIs, the project combines insightful engineering with sophisticated mathematics, towards the goal of producing practically useful controllers that have rigorous performance guarantees. Through a series of outreach activities, the project will help broaden participation of underrepresented groups in STEM research.This project will address among the most challenging and important networked systems problems. It will entail fundamental research to overcome current limitations of model-based control of industrial networks. The project will use a new robust model predictive control framework and event-triggered timing model that combines the strengths of autonomous control and optimization. The work will develop an event-triggered timing model for receding horizon model predictive control of a real-time network, that will handle task dependency and timing variations and adaptively compensate for contentions and time delays. This will allow multiple sensor and actuator nodes for each control loop, a necessity for state-of-the-art networked industrial applications. The controller will respect state and input constraints, optimize cost criteria, predict timing variations, and ensure robustness to perturbations. It will provide least-conservative estimates of robust positive invariant sets in the workspace, and overcome the conservativeness of the best existing results, where the state space is usually chosen to be a sublevel set of a Lyapunov function whose boundary is determined by the supremum of the perturbations. Instead, the controller will seek maximal perturbation bounds that can be allowed before state constraints are violated. Much of the specific implementation, as well as the experimental validation, will emphasize CANbus networks. Because CANbus is popular for real-time industrial control applications, and is the standard protocol for the automotive industry, this will maximize the immediate impact of the results.
通过共享数据网络连接多个执行器,控制器和传感器是降低成本并提高现代工业应用(包括汽车,飞机和制造设施)的可维护性的常见手段。在大多数这些应用中,精确的时机对于正确的系统功能是必要的,并且时机偏差有可能导致绩效的有害甚至威胁生命的恶化。但是,共享网络可能会发生争执,这意味着多个连接的设备希望同时通过网络传输数据。该项目将开发实时网络控制器,这些控制器可以在实现所需的控制目标的同时解决争议。此外,它们对物理系统和网络本身的扰动将是强大的。该项目的重点是在行业中常见的网络体系结构上,结果将特别适用于汽车控制和机器人应用。正如PI的专业知识所反映的那样,该项目将有见地的工程与精致的数学结合在一起,以生产具有严格性能保证的实际有用的控制器。通过一系列的外展活动,该项目将有助于扩大代表性不足的STEM研究的参与。该项目将解决最具挑战性和最重要的网络系统问题之一。它将需要基础研究,以克服基于模型的工业网络控制的当前局限性。该项目将使用新的强大模型预测控制框架和事件触发的时序模型,该模型结合了自主控制和优化的优势。这项工作将开发一个事件触发的时序模型,用于对实时网络的水平模型预测控制,该模型将处理任务依赖性和时机变化,并适应性地补偿论点和时间延迟。这将允许每个控制循环的多个传感器和执行器节点,这是最先进的网络工业应用程序的必要性。控制器将尊重状态和输入约束,优化成本标准,预测定时变化并确保对扰动的鲁棒性。它将在工作空间中提供最不保守的估计值,并克服最佳现有结果的保守性,其中通常选择状态空间是一组lyapunov函数集,其边界由互动的上限确定。相反,控制器将寻求在违反状态约束之前允许的最大扰动界限。大部分特定实现以及实验验证将强调Canbus网络。由于Canbus在实时工业控制应用中很受欢迎,并且是汽车行业的标准协议,因此这将最大程度地提高结果的直接影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Malisoff其他文献

Remarks on output feedback stabilization of two-species chemostat models
  • DOI:
    10.1016/j.automatica.2010.06.035
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frédéric Mazenc;Michael Malisoff
  • 通讯作者:
    Michael Malisoff

Michael Malisoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Malisoff', 18)}}的其他基金

Collaborative Research: Designs and Theory for Interval Contractors and Reference Governors with Aerospace Applications
合作研究:间隔承包商和参考调速器与航空航天应用的设计和理论
  • 批准号:
    2308282
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
  • 批准号:
    2009659
  • 财政年份:
    2020
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Sequential Predictors for Partial Differential Equation and Delay Systems: Designs, Theory, and Applications
合作研究:偏微分方程和延迟系统的序贯预测器:设计、理论和应用
  • 批准号:
    1711299
  • 财政年份:
    2017
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
  • 批准号:
    1408295
  • 财政年份:
    2014
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Theory, Methods, and Applications of Nonlinear Control Systems with Time Delays
时滞非线性控制系统的理论、方法和应用
  • 批准号:
    1102348
  • 财政年份:
    2011
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Autonomous Control and Sensing Algorithms for Surveying the Impacts of Oil Spills on Coastal Environments
合作研究:RAPID:用于调查溢油对沿海环境影响的自主控制和传感算法
  • 批准号:
    1056255
  • 财政年份:
    2010
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
MSPA-ENG: Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications II
MSPA-ENG:非线性控制系统理论研究:李雅普诺夫函数、稳定性和工程应用 II
  • 批准号:
    0708084
  • 财政年份:
    2007
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Research in Nonlinear Control Systems Theory: Lyapunov Functions, Stabilization, and Engineering Applications
非线性控制系统理论研究:李亚普诺夫函数、稳定性和工程应用
  • 批准号:
    0424011
  • 财政年份:
    2004
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant

相似国自然基金

面向制造服务协作的工业互联网平台运营鲁棒性分析与调控机理研究
  • 批准号:
    52175448
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于多节点协作的高鲁棒性低度复杂的抗窃听技术研究
  • 批准号:
    61501347
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多层异构网中基于残缺信道矩阵的鲁棒性干扰对齐问题研究
  • 批准号:
    61401178
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于非理想CSIT的LTE/LTE-A无线通信系统的鲁棒干扰管理技术研究
  • 批准号:
    61371086
  • 批准年份:
    2013
  • 资助金额:
    82.0 万元
  • 项目类别:
    面上项目
基于复杂网络的异类多智能体系统的协作控制和鲁棒性研究
  • 批准号:
    60875039
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319242
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Security and Robustness for Intermittent Computing Using Cross-Layer Post-CMOS Approaches
协作研究:SaTC:CORE:中:使用跨层后 CMOS 方法的间歇计算的安全性和鲁棒性
  • 批准号:
    2303115
  • 财政年份:
    2023
  • 资助金额:
    $ 16.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了