Optimal Control of Periodic Adsorption Processes
周期性吸附过程的优化控制
基本信息
- 批准号:25616871
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Periodic adsorption processes are widely established in process engineering for the production of gases, fine chemicals or Pharmaceuticals, and novel uses involve the combination of adsorption and reaction processes. Characteristic for all these processes are traveling concentration fronts of different species in a solid fixed bed, and periodic switching between different types of operation. The dynamics of each phase can be modelled by instationary partial differential algebraic equations (PDAE) in one or two spatial dimensions, so that the overall system is described by periodically switched PDAE. Following start-up, a periodic attractor, or Cyclic Steady State (CSS), is finally reached and used for production. This CSS should ideally be optimal with respect to operational costs and product specifications, and recent years have seen the development of a variety of novel process operation variants to improve efficiency. Two of these are the processes to be investigated in Dortmund: the simulated moving bed (SMB) with variable inlet concentrations (ModiCon-SMB) studied in the group of Prof. Engell and the entirely novel fixed bed catalytic reactor with desorptive cooling (in the following called Desorptive cooling (DC)-Process ) in the group of Prof. Agar.Due to the large scale of the process models and due to their periodic nature, only few model based optimisation approaches exist and their use for large scale applications is limited by prohibitive computation times. Aim of the project is to develop efficient numerical methods for optimisation of periodic adsorption processes described by periodically switched large scale instationary PDAE. These methods shall combine novel reduced Newton type optimisation methods with a type of Picard iteration to cope efficiently with the periodicity constraints. The following features shall characterise our new methods:¿ a simultaneous optimisation framework is chosen in which the discretised model equations enter the optimisation problem as nonlinear constraints¿ only one cycle is simulated and optimised, and periodicity is imposed in form of additional constraints¿ a time-domain decomposition is used to handle the intermediate switching and the enormous amount of data¿ a novel reduced SQP framework being able to cope with inexact Jacobians is used to solve the nonlinear programming problem resulting after discretisation of model equations and controls¿ a mixed Newton-Picard scheme is used to treat the periodicity constraints efficientlyThe method development is driven by the requirements of the two processes in Dortmund. Final application aim of the project is the optimisation and experimental validation of the operating regime of the novel desorptive cooling (DC) process.
周期性吸附过程在气体、精细化学品或药物生产的过程工程中广泛建立,并且新的用途涉及吸附和反应过程的组合。所有这些过程的特征是固体固定床中不同物种的浓度前沿,以及不同类型操作之间的周期性切换。每个阶段的动态可以在一个或两个空间维度的非定常偏微分代数方程(PDAE)建模,使整个系统描述周期性切换PDAE。在启动之后,最终达到周期性吸引子或循环稳态(CSS)并用于生产。理想情况下,这种CSS应该在操作成本和产品规格方面是最佳的,近年来已经开发了各种新的工艺操作变体以提高效率。其中两个是在多特蒙德进行研究的过程:变入口浓度模拟移动床Engell教授的小组研究的ModiCon-SMB和具有解吸冷却的全新固定床催化反应器(在下文中称为解吸冷却(DC)-过程)。由于过程模型的大规模和由于其周期性,基于模型的优化方法很少,并且它们在大规模应用中的使用受到计算时间限制。该项目的目的是开发有效的数值方法,用于优化周期性切换的大规模非定常PDAE描述的周期性吸附过程。这些方法应结合联合收割机新颖的减少牛顿型优化方法与皮卡德迭代的类型,以有效地科普周期性约束。新方法的特点如下:选择一个同步优化框架,其中离散化的模型方程作为非线性约束进入优化问题;只模拟和优化一个周期,并以附加约束的形式施加周期性;使用时域分解来处理中间切换和大量数据;一种新的简化的SQP框架能够科普不精确的雅可比矩阵,用于解决模型方程和控制离散化后产生的非线性规划问题;一种混合的Newton-Picard格式用于有效地处理周期性约束。该项目的最终应用目标是优化和实验验证的新型解吸冷却(DC)过程的操作制度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hans Georg Bock其他文献
Professor Dr. Hans Georg Bock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hans Georg Bock', 18)}}的其他基金
Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems
约束生物力学多体系统双层优化控制脑瘫诊断和治疗设计的数值方法
- 批准号:
314150787 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Numerical algorithms for hierarchical optimization for estimating parameters in state and control constrained optimal control problems.
用于估计状态和控制约束最优控制问题中的参数的分层优化的数值算法。
- 批准号:
242358572 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Improving Limited Angle x-ray computed Tomography by Optical data integration - ILATO
通过光学数据集成改进有限角度 X 射线计算机断层扫描 - ILATO
- 批准号:
220034008 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Structure exploitation for Scenario-Tree NMPC and MHE
场景树 NMPC 和 MHE 的结构开发
- 批准号:
191941178 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Optimierungsbasierte Regelung verfahrenstechnischer Prozesse Teilantrag 2: Numerische Methoden für die optimierungsbasierte Regelung: Kopplung von Online-Schätzung und robuster Prozessoptimierung
过程工程过程的基于优化的控制子应用2:基于优化的控制的数值方法:在线估计和鲁棒过程优化的耦合
- 批准号:
34424919 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Optimization-based control of chemical processes. Numerical methods for optimization-based control: Coupling of online estimation and robust process optimization
基于优化的化学过程控制。
- 批准号:
5400160 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Echtzeitoptimierung bei großen nichtlinearen DAE-Modellen der Verfahrenstechnik am Beispiel gekoppelter Destillationskolonnen
以耦合精馏塔为例,实时优化过程工程中的大型非线性 DAE 模型
- 批准号:
5251616 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Priority Programmes
Theory and Methods of Control and Optimization of Dynamical Systems for Engineering Applications
工程应用动力系统控制与优化理论与方法
- 批准号:
448676431 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
High-mobility Semiconductor Devices due to Control of Phonon Field caused by Defect-free Nano-periodic Structures
通过无缺陷纳米周期结构控制声子场实现高迁移率半导体器件
- 批准号:
20H05649 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Bio-inspired quasi-periodic materials: their functionalization and physical property control
仿生准周期材料:其功能化和物理性能控制
- 批准号:
19K03766 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of mechanism and develop of new control method of formation of laser induced periodic surface structure on ceramics for medical applications
医疗用陶瓷激光诱导周期性表面结构形成机理研究及新控制方法开发
- 批准号:
19K05320 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Algorithms for Optimal Control of Time-Periodic and Nonlinear Systems
时间周期和非线性系统最优控制的高效算法
- 批准号:
1819110 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a new flow control methodology using periodic wall heating
使用周期性壁加热开发新的流量控制方法
- 批准号:
18K03952 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wave analysis and wave control of damped mass-spring systems based on global periodic structure
基于全局周期结构的阻尼质量-弹簧系统的波动分析与波动控制
- 批准号:
16K06158 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
- 批准号:
1538300 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Design of energy-efficient power assisting control methods for almost-periodic motions
准周期运动节能助力控制方法设计
- 批准号:
15K18096 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
- 批准号:
1538369 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanistic insights into the periodic control of transcription in the mammalian cell cycle
对哺乳动物细胞周期中转录周期性控制的机制见解
- 批准号:
BB/M000036/1 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grant