Theory and Methods of Control and Optimization of Dynamical Systems for Engineering Applications

工程应用动力系统控制与优化理论与方法

基本信息

项目摘要

This German-Russian collaboration project aims at the development of both analytical and numerical methods for optimization and optimal control of certain classes of dynamical processes, proposed and studied by the Russian partners, which exhibit complex characteristic properties important for engineering applications. Robotic locomotion in resistive environment without external forces only by moving internal masses or configuration changes leads to mechanical control problems with state-dependent discontinuities, especially due to Coulomb friction, and numerous control and state constraints. Underactuated multibody systems with visco-elastic components, only partially measurable states, uncertain system parameters and external perturbations call for fast feedback control laws to achieve high-precision positioning. Fuel efficient flight planning of high-speed (supersonic) passenger aircraft leads to complex models of longhorizon mixed-integer control problems with numerous state and control constraints accounting for technical restrictions and passenger comfort and safety. In order to meet these particular requirements new analytical and numerical optimal control methods will be developed. The Heidelberg team will consider the relatively general class of nonlinear optimal control problems (OCP) with integer-valued controls and governed by ODE or DAE subject to boundary conditions and state and control constraints. The right hand sides of the dynamics may be discontinuous at zeros of state-dependent switching functions, arising particularly from Coulomb friction. In principle, such optimal control problems can be solved by extensions of Pontryagin’s Maximum Principle (PMP). However, in the above case the indirect PMP results in multipoint boundary value problems with switching functions and additional jumps in the adjoint variables, which are extremely difficult to solve. The proposed project will therefore build on the direct multiple shooting approach developed by the Heidelberg group to solve such problems numerically. Two ways to handle Coulomb friction will be developed, a “forward integration” approach and a novel “disjunctive programming” method. For systems with uncertainties, optimal feedback controls will be computed by fast multilevel iterations for “Nonlinear Model Predictive Control” combined with “Moving Horizon Estimation”, which will be generalized to the general OCP class above. We will develop a new analytical approach to derive fast, locally valid, piecewise affine feedback control laws, which will significantly reduce sampling times further, compare it to the PMP approach to compute “neighbouring feedback” controls, and develop possible cross-over techniques. The development of the dedicated new numerical methods will go hand in hand with analysis and solution of the challenging engineering problems and will be conducted in close cooperation of the Moscow and the Heidelberg team.
这个德国-俄罗斯合作项目旨在开发分析和数值方法,用于俄罗斯合作伙伴提出和研究的某些类别的动态过程的优化和最佳控制,这些过程具有对工程应用重要的复杂特性。机器人在无外力环境中的运动仅通过移动内部质量或配置变化导致具有状态依赖不连续性的机械控制问题,特别是由于库仑摩擦以及许多控制和状态约束。欠驱动多体系统具有粘弹性元件、部分可测状态、系统参数不确定性和外部扰动,需要快速反馈控制律来实现高精度定位。高速(超音速)客机的燃油效率飞行规划导致了复杂的模型longhorizon混合整数控制问题,许多国家和控制的限制占技术限制和乘客的舒适性和安全性。为了满足这些特殊的要求,将开发新的分析和数值最优控制方法。海德堡团队将考虑相对一般的一类非线性最优控制问题(OCP),这些问题具有整数值控制,并受边界条件以及状态和控制约束的ODE或DAE控制。动态的右手边可能是不连续的状态依赖的开关函数,特别是库仑摩擦引起的零点。原则上,这样的最优控制问题可以通过扩展庞特里亚金最大值原理(PMP)来解决。然而,在上述情况下,间接PMP的结果在多点边值问题的切换功能和额外的跳跃的伴随变量,这是非常难以解决的。因此,拟议的项目将建立在海德堡小组开发的直接多次射击方法的基础上,以数值方式解决这些问题。两种方法来处理库仑摩擦将开发,一个“前向积分”的方法和一个新的“析取编程”的方法。对于具有不确定性的系统,最优反馈控制将通过“非线性模型预测控制”与“滚动时域估计”相结合的快速多层迭代来计算,这将推广到上述一般的OCP类。我们将开发一种新的分析方法,以获得快速,局部有效,分段仿射反馈控制律,这将显着减少采样时间进一步,比较它的PMP方法来计算“相邻的反馈”控制,并开发可能的交叉技术。专用的新数值方法的开发将与具有挑战性的工程问题的分析和解决齐头并进,并将在莫斯科和海德堡团队的密切合作下进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hans Georg Bock其他文献

Professor Dr. Hans Georg Bock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hans Georg Bock', 18)}}的其他基金

Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems
约束生物力学多体系统双层优化控制脑瘫诊断和治疗设计的数值方法
  • 批准号:
    314150787
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Numerical algorithms for hierarchical optimization for estimating parameters in state and control constrained optimal control problems.
用于估计状态和控制约束最优控制问题中的参数的分层优化的数值算法。
  • 批准号:
    242358572
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Improving Limited Angle x-ray computed Tomography by Optical data integration - ILATO
通过光学数据集成改进有限角度 X 射线计算机断层扫描 - ILATO
  • 批准号:
    220034008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structure exploitation for Scenario-Tree NMPC and MHE
场景树 NMPC 和 MHE 的结构开发
  • 批准号:
    191941178
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimierungsbasierte Regelung verfahrenstechnischer Prozesse Teilantrag 2: Numerische Methoden für die optimierungsbasierte Regelung: Kopplung von Online-Schätzung und robuster Prozessoptimierung
过程工程过程的基于优化的控制子应用2:基于优化的控制的数值方法:在线估计和鲁棒过程优化的耦合
  • 批准号:
    34424919
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimal Control of Periodic Adsorption Processes
周期性吸附过程的优化控制
  • 批准号:
    25616871
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optimization-based control of chemical processes. Numerical methods for optimization-based control: Coupling of online estimation and robust process optimization
基于优化的化学过程控制。
  • 批准号:
    5400160
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Echtzeitoptimierung bei großen nichtlinearen DAE-Modellen der Verfahrenstechnik am Beispiel gekoppelter Destillationskolonnen
以耦合精馏塔为例,实时优化过程工程中的大型非线性 DAE 模型
  • 批准号:
    5251616
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Formal Methods for Control of Cyber-Physical Systems: Theory, Algorithms, and Implementations
信息物理系统控制的形式化方法:理论、算法和实现
  • 批准号:
    RGPIN-2022-03363
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Theory, Methods, and Applications of Nonlinear Control Systems with Time Delays
时滞非线性控制系统的理论、方法和应用
  • 批准号:
    1102348
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Construction of nonlinear optimal control theory based on fusion of quantization methods for HJB equations and stochastic processes
基于HJB方程和随机过程量化方法融合的非线性最优控制理论构建
  • 批准号:
    22760320
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Symposium V "Crystal-Shape Control and Shape-Dependent Properties-Methods, Mechanism, Theory and Simulation. San Francisco, CA, March 24-28,2008
研讨会 V“晶体形状控制和形状相关特性 - 方法、机制、理论和模拟。加利福尼亚州旧金山,2008 年 3 月 24 日至 28 日
  • 批准号:
    0750214
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive multilevel SQP-methods for PDAE-constrained optimization with restrictions on control and state. Theory and Applications
用于具有控制和状态限制的 PDAE 约束优化的自适应多级 SQP 方法。
  • 批准号:
    25227538
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Nonsmooth methods in optimal control theory
最优控制理论中的非光滑方法
  • 批准号:
    0405132
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development and Application of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论的发展与应用
  • 批准号:
    15560375
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the construction of a framework of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论框架构建研究
  • 批准号:
    12650444
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Research on Effective Methods for Analysis and Design of Control Systems Based on Duality Theory
基于对偶理论的控制系统分析与设计有效方法的基础研究
  • 批准号:
    11650447
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Commutant Lifting Methods in Operator Theory and Robust Control Theory
数学科学:算子理论和鲁棒控制理论中的交换提升方法
  • 批准号:
    9706838
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了