Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
基本信息
- 批准号:2311085
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Neural Networks (DNN) enabled Cyber-Physical Systems (CPS) hold great promise for revolutionizing many industries, such as drones and self-driving cars. However, the current generation of DNN cannot provide analyzable behaviors and verifiable properties that are necessary for safety assurance. This critical flaw in purely data-driven DNN sometimes leads to catastrophic consequences, such as vehicle crashes linked to self-driving and driver-assistance technologies. On the other hand, physics-model-based engineering methods provide analyzable behaviors and verifiable properties, but do not match the performance of DNN systems. These considerations motivate the work in this project which aims at physics-model-based neural networks (NN) redesign, yielding HyPhy-DNN: a hybrid self-correcting physics-enhanced DNN framework. HyPhy-DNN will provide the performance of DNNs and the analyzability and verifiability of physical models, thus providing a foundation for verifiably safe self-driving cars, drones, and other CPS systems. Moreover, the HyPhy-DNN will fundamentally advance the integration of deep learning and robust control to enable safety- and time-critical CPS to safely operate with high performance in unforeseen and dynamic environments.The HyPhy-DNN will make three innovations in redesigning NN architecture: (i) Physics augmentations of NN inputs for directly capturing hard-to-learn physical quantities and embedding Taylor series; (ii) Physics-guided neural network editing, such as removing links between independent physics variables or fixed weights on links between certain physics variables to maintain the known physics identity such as in conservation laws; and (iii) Time-frequency-representation filtering-based activations for filtering out noise having dynamic frequency distribution. The novel architectural redesigns will empower the HyPhy-DNN with four targeted capabilities: 1) controllable and provable model accuracy; 2) maximum avoidance of spurious correlations; 3) strict compliance with physics knowledge; and 4) automatic correction of unsafe control commands. Finally, the safety certification of any DNN will be a long-term challenge. Hence, the HyPhy-DNN shall have a simple but verified backup controller for guaranteeing safe and stable operation in dynamic and unforeseen environments. To achieve this, the research team will integrate HyPhy-DNN with an adaptive-model-adaptive-control (AMAC) framework, the core novelty of which lies in fast and accurate nonlinear model learning via sparse regression for model-based robust control. The HyPhy-DNN and AMAC are complementary and will be interactive at different scales of system performance and functionalities during the safety-status-cycle, supported by the Simplex software architecture, a well-known real-time software technology that tolerates faults and allows online control system upgrades.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)支持的网络物理系统(CPS)为无人机和自动驾驶汽车等许多行业带来了巨大的变革。然而,当前一代的深度神经网络不能提供安全保证所必需的可分析行为和可验证属性。纯粹数据驱动的深度神经网络的这一关键缺陷有时会导致灾难性后果,例如与自动驾驶和驾驶辅助技术相关的车辆碰撞。另一方面,基于物理模型的工程方法提供了可分析的行为和可验证的属性,但与深度神经网络系统的性能不匹配。这些考虑因素激发了本项目的工作,该项目旨在重新设计基于物理模型的神经网络(NN),从而产生hhy -DNN:一种混合自校正物理增强的DNN框架。hhy - dnn将提供dnn的性能以及物理模型的可分析性和可验证性,从而为可验证安全的自动驾驶汽车、无人机和其他CPS系统提供基础。此外,hhy - dnn将从根本上推进深度学习和鲁棒控制的集成,使安全和时间关键型CPS能够在不可预见的动态环境中安全高效地运行。hcy - dnn将在重新设计NN架构方面进行三项创新:(i)对NN输入进行物理增强,以直接捕获难以学习的物理量并嵌入泰勒级数;(ii)物理指导的神经网络编辑,例如删除独立物理变量之间的联系,或在某些物理变量之间的联系上固定权重,以保持已知的物理特性,例如在守恒定律中;(iii)基于时间-频率表示滤波的激活,用于滤除具有动态频率分布的噪声。新颖的架构重新设计将赋予hhy - dnn四个目标能力:1)可控和可证明的模型精度;2)最大限度地避免虚假相关性;3)严格遵守物理知识;4)自动校正不安全的控制命令。最后,任何DNN的安全认证都将是一个长期的挑战。因此,为了保证在动态和不可预见的环境中安全稳定地运行,hhy - dnn必须有一个简单但经过验证的备份控制器。为了实现这一目标,研究团队将把hcy - dnn与自适应模型自适应控制(AMAC)框架相结合,其核心新颖之处在于通过稀疏回归快速准确地学习非线性模型,以实现基于模型的鲁棒控制。hly - dnn和AMAC是互补的,在安全状态周期内,它们将在不同规模的系统性能和功能上进行交互,并由Simplex软件架构提供支持,Simplex软件架构是一种知名的实时软件技术,可以容忍故障并允许在线控制系统升级。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Model-Regulated Deep Reinforcement Learning Towards Safety & Stability Guarantees
- DOI:10.1109/cdc49753.2023.10383560
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Hongpeng Cao;Yanbing Mao;Lui Sha;Marco Caccamo
- 通讯作者:Hongpeng Cao;Yanbing Mao;Lui Sha;Marco Caccamo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lui Sha其他文献
Maintaining global time in futurebus+
- DOI:
10.1007/bf00365390 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.300
- 作者:
Richard A. Volz;Lui Sha;Dwight Wilcox - 通讯作者:
Dwight Wilcox
A Software Architecture for Dependable and Evolvable Industrial Computing Systems.
用于可靠且可演进的工业计算系统的软件架构。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Lui Sha;R. Rajkumar;Michael Gagliardl - 通讯作者:
Michael Gagliardl
MediK: Towards Safe Guideline-based Clinical Decision Support
MediK:迈向基于安全指南的临床决策支持
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Manasvi Saxena;Shuang Song;Lui Sha - 通讯作者:
Lui Sha
Local Group Communication-aware MAC Protocol in Wireless Sensor Networks
- DOI:
10.1007/s10776-006-0038-x - 发表时间:
2006-07-13 - 期刊:
- 影响因子:1.200
- 作者:
Rong Zheng;Jatindera Singh Walia;Lui Sha - 通讯作者:
Lui Sha
System-wide energy optimization for multiple DVS components and real-time tasks
- DOI:
10.1007/s11241-011-9125-x - 发表时间:
2011-05-07 - 期刊:
- 影响因子:1.300
- 作者:
Heechul Yun;Po-Liang Wu;Anshu Arya;Cheolgi Kim;Tarek Abdelzaher;Lui Sha - 通讯作者:
Lui Sha
Lui Sha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lui Sha', 18)}}的其他基金
CPS: Medium: Collaborative Research: Virtual Sully: Autopilot with Multilevel Adaptation for Handling Large Uncertainties
CPS:中:协作研究:Virtual Sully:具有多级适应能力的自动驾驶仪,可处理较大的不确定性
- 批准号:
1932529 - 财政年份:2019
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
I-Corps: Computational Pathophysiology-Centric Medical Guidance Systems
I-Corps:以计算病理生理学为中心的医疗指导系统
- 批准号:
1931218 - 财政年份:2019
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Real-Time Computing Infrastructure for Integrated CPU-GPU SoC Platforms
CSR:小型:协作研究:集成 CPU-GPU SoC 平台的实时计算基础设施
- 批准号:
1815891 - 财政年份:2018
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CPS:TTP Option:Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
- 批准号:
1545002 - 财政年份:2015
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CSR: Medium: Multicore Real Time Virtual Partitions
CSR:中:多核实时虚拟分区
- 批准号:
1302563 - 财政年份:2013
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CPS: Synergy: Integrated Emergency Cyber Physical Human Systems
CPS:协同:集成应急网络物理人体系统
- 批准号:
1329886 - 财政年份:2013
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CSR-EHCS(CPS),TM: Architecture for the Safe Composition of Complex Medical Systems
CSR-EHCS(CPS),TM:复杂医疗系统安全组合架构
- 批准号:
0834709 - 财政年份:2008
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CSR EHS: Formal Model Based Health and Medical System Composition
CSR EHS:基于正式模型的健康和医疗系统构成
- 批准号:
0720482 - 财政年份:2007
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
SGER: Stability of Real Time Software Systems
SGER:实时软件系统的稳定性
- 批准号:
0649885 - 财政年份:2006
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Systems of Networked Embedded Devices
合作研究:网络嵌入式设备系统
- 批准号:
0549038 - 财政年份:2005
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant