Nonlinear Schroedinger systems with saturation effect and Willmore boundary value problem

具有饱和效应的非线性薛定谔系统和威尔莫尔边值问题

基本信息

项目摘要

Nonlinear Schroedinger systems are commonly used to describe the propagataion of electromagnetic radiation in optic wave guides which are built from so-called nonlinear materials. When Kerr media are investigated one usually considers cubic nonlinear Schroedinger systems and during the past ten years there have been many contributions to that research field. In the first part of my research project I plan to follow new ideas that have been recently published by Maia, Montefusco, Pellacci (2013) who were first to systematically analyze a model for Kerr media with saturation effect. My aim is, firstly, to sharpen their existence results for nontrivial standing waves in such materials and secondly, to deal with a broader class of nonlinear Schroedinger systems that equally describe saturated nonlinear materials.In the second part of my research project I plan to deal with curves and surfaces of minimal bending energy. Mathematically the bending energy is quantified by the Willmore energy which represents a simplified variant of the Helfrich energy. In cell biology curves of minimal Willmore energy serve as a model for cell membranes. In the past five years symmetric graph-shaped curves with minimal Willmore energy among all graph-shaped curves satisfying the same boundary conditions have been found. In my project I wish to prove the existence of curves with optimal Willmore energy among all curves which satisfy the same boundary conditions. In addition I aim at extending some known results for symmetric surfaces of revolution to the nonsymmetric case and to surfaces of a more general shape.
非线性薛定谔系统通常用来描述电磁辐射在由所谓的非线性材料构成的光波导中的传播。当研究克尔介质时,人们通常会想到立方非线性薛定谔系统,在过去的十年里,人们对这一领域的研究做出了许多贡献。在我的研究项目的第一部分,我计划遵循Maia,Montefusco,Pellacci(2013)最近发表的新想法,他们首先系统地分析了具有饱和效应的Kerr媒体的模型。我的目的是,首先,加强它们在这类材料中非平凡驻波的存在性结果;其次,处理一类更广泛的、等价地描述饱和非线性材料的非线性薛定谔系统。在我的研究项目的第二部分,我计划处理弯曲能最小的曲线和曲面。在数学上,弯曲能由威尔莫尔能量来量化,威尔莫尔能量代表赫尔夫里奇能量的简化变体。在细胞生物学中,最小威尔莫尔能量曲线可作为细胞膜的模型。在过去的五年中,人们在所有满足相同边界条件的图形曲线中找到了具有最小Willmore能量的对称图形曲线。在我的项目中,我希望证明在满足相同边界条件的所有曲线中存在具有最优Willmore能量的曲线。此外,我的目的是将对称旋转曲面的一些已知结果推广到非对称情况和更一般形状的曲面。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A note on the local regularity of distributional solutions and subsolutions of semilinear elliptic systems
  • DOI:
    10.1007/s00229-017-0917-8
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Rainer Mandel
  • 通讯作者:
    Rainer Mandel
A Priori Bounds and Global Bifurcation Results for Frequency Combs Modeled by the Lugiato-Lefever Equation
  • DOI:
    10.1137/16m1066221
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rainer Mandel;W. Reichel
  • 通讯作者:
    Rainer Mandel;W. Reichel
Boundary value problems for Willmore curves in $$\mathbb {R}^2$$R2
$$mathbb {R}^2$$R2 中 Willmore 曲线的边值问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Rainer Mandel其他文献

Dr. Rainer Mandel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于共振数据重构半直线上Schroedinger算子
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Schroedinger方程正反散射问题的数值解法研究
  • 批准号:
    11126240
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Quasiperiodic Schroedinger operators with well-approximated frequencies
具有良好近似频率的准周期薛定谔算子
  • 批准号:
    EP/X018814/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Critical exponent for nonlinear Schroedinger equations
非线性薛定谔方程的临界指数
  • 批准号:
    23K03160
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of time periodic Schroedinger equations
时间周期薛定谔方程的数学分析
  • 批准号:
    23K03187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random matrix theory and analysis of quasiperiodic Schroedinger operators
随机矩阵理论与准周期薛定谔算子分析
  • 批准号:
    2902867
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Semiclassical analysis of Schroedinger equations
薛定谔方程的半经典分析
  • 批准号:
    21K03303
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification of stability and instability of solitary waves for nonlinear Schroedinger equations
非线性薛定谔方程的孤波稳定性和不稳定性分类
  • 批准号:
    20K14349
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Different kinds of Parisi-Wu equations(parabolic or Schroedinger stochastic quantisation equations); Wave and dispersive PDEs; PKS equations; Cattaneo
不同类型的Parisi-Wu方程(抛物线或薛定谔随机量化方程);
  • 批准号:
    2438500
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Constructing theoretical atomic spectra and molecular wave functions on the Schroedinger-level accuracy
构建薛定谔级精度的理论原子光谱和分子波函数
  • 批准号:
    20K21182
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Schroedinger-cat-state control in a qubit-oscillator coupled system
量子位振荡器耦合系统中的薛定谔猫状态控制
  • 批准号:
    19K03693
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of Schroedinger equations
薛定谔方程的数学分析
  • 批准号:
    19K03589
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了