Large-Scale Optical Ultrasound Transducer Arrays for High-Speed and High-Resolution 3D Acoustic Tomography
用于高速、高分辨率 3D 声学断层扫描的大型光学超声换能器阵列
基本信息
- 批准号:2330199
- 负责人:
- 金额:$ 40.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ultrasound imaging is essential in the clinic for early detection, diagnosis, and prognosis of many diseases. It provides real-time imaging speed, has no harmful ionizing radiation, and is low cost. However, current ultrasound imaging systems mainly produce two-dimensional planar images that may be inaccurate and/or difficult to interpret. Therefore, a three-dimensional (3D) imaging capability is essential for visualizing, navigating, and investigating patient anatomy and pathologies that are naturally 3D. To produce 3D images in a timely manner, an ultrasound imaging system must be able to capture the whole acoustic wave field emitted by the imaging target, such as a tumor. This requires a large array of ultrasound sensors or transducers, massive electrical cables, and sophisticated and expensive data acquisition electronics. Unfortunately, because of high system complexity and cost, 3D ultrasound imaging is still very limited in terms of performance and availability. In this project, a new optical technology will be developed to detect and convert the invisible acoustic wave field into a visible optical light field, which can be readily recorded by a camera. This “seeing the sound” approach is expected to address the performance and cost issues and open the door for many applications of 3D ultrasound imaging. This project will also provide unique multidisciplinary learning and training opportunities in microsystems, optics, acoustics and medical imaging for students and the general public. This project aims to achieve large-scale optical ultrasound transducer (OUT) arrays for enabling high-speed and high-resolution 3D acoustic tomography. Different from their electrical counterparts, OUTs convert ultrasound waves into optical signals through optomechanical modulation. This makes it possible to maintain high sensitivity even with a small element size. What’s more, ultrasound signals can be read out “wirelessly” via optical means without physical interconnects. However, one of the fundamental challenges in existing OUTs are their poor optical uniformity. Reading out ultrasound signals from multiple elements requires continual optical tuning, which is a tedious process and seriously limits the data acquisition speed. This project aims to address the fundamental bottleneck issues in current OUTs by exploring novel optical detector design, fabrication, and readout methods. Particularly, new mechanical/optical co-design and modeling will be combined with precision micromachining and tuning processes for achieving large-scale OUT arrays with controllable and uniform optical and acoustic properties. In addition, a new parallel approach based on pulsed illumination and camera capturing will be developed for fast ultrasound data acquisition. With wireless optical readout and natural immunity to electromagnetic interference, the OUT array could enable new acoustic imaging capabilities not possible before from tetherless, wearable, or remote imaging to seamless fusion with other mainstream imaging modalities. In addition, the high optical transparency of the OUT array can greatly facilitate the integration of hybrid optical and acoustic imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超声成像在临床上对于许多疾病的早期检测、诊断和预后是必不可少的。它提供实时成像速度,没有有害的电离辐射,并且成本低。然而,当前的超声成像系统主要产生可能不准确和/或难以解释的二维平面图像。因此,三维(3D)成像能力对于可视化、导航和研究自然是3D的患者解剖结构和病理是必不可少的。为了及时地产生3D图像,超声成像系统必须能够捕获由成像目标(诸如肿瘤)发射的整个声波场。这需要大量的超声波传感器或换能器、大量的电缆以及复杂而昂贵的数据采集电子设备。不幸的是,由于高系统复杂性和成本,3D超声成像在性能和可用性方面仍然非常有限。在本项目中,将开发一种新的光学技术,以检测并将不可见的声波场转换为可见的光学光场,该光场可以很容易地被相机记录。这种“看到声音”的方法有望解决性能和成本问题,并为3D超声成像的许多应用打开大门。该项目还将为学生和公众提供微系统、光学、声学和医学成像方面独特的多学科学习和培训机会。该项目旨在实现大规模光学超声换能器(OUT)阵列,以实现高速和高分辨率的3D声学层析成像。与电学器件不同的是,OUTs通过光机械调制将超声波转换为光信号。这使得即使元件尺寸小也可以保持高灵敏度。更重要的是,超声信号可以通过光学手段“无线”读出,而无需物理互连。然而,现有的OUT中的基本挑战之一是它们差的光学均匀性。从多个元件阅读出超声信号需要连续的光学调谐,这是一个繁琐的过程,并且严重限制了数据采集速度。本项目旨在通过探索新颖的光学探测器设计、制造和读出方法,解决当前OUTs中的根本瓶颈问题。特别是,新的机械/光学协同设计和建模将与精密微加工和调谐工艺相结合,以实现具有可控和均匀光学和声学特性的大规模OUT阵列。此外,一种新的并行方法的基础上脉冲照明和摄像机捕获将开发用于快速超声数据采集。凭借无线光学读出和对电磁干扰的天然免疫力,OUT阵列可以实现以前不可能实现的新的声学成像功能,从无线、可穿戴或远程成像到与其他主流成像模式的无缝融合。此外,OUT阵列的高光学透明度可以极大地促进混合光学和声学成像的集成。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Zou其他文献
A Discrete Weighted Helmholtz Decomposition and Its Application
离散加权亥姆霍兹分解及其应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Qiya Hu;Shi Shu;Jun Zou - 通讯作者:
Jun Zou
Volatile Ejection in Jet Manner and its Influence on Combustion of Isolated Coal Particles
喷射方式挥发分喷出及其对孤立煤粒燃烧的影响
- DOI:
10.1007/s12217-022-09981-0 - 发表时间:
2022-08 - 期刊:
- 影响因子:1.8
- 作者:
Wantao Yang;Yang Zhang;Bing Liu;Jun Zou;Hai Zhang;Junfu Lyu - 通讯作者:
Junfu Lyu
High performance of near-infrared emission for S-band amplifier from Tm3þ-doped bismuth glass incorporated with Ag nanoparticles
掺有银纳米颗粒的 Tm3-掺杂铋玻璃的 S 波段放大器的高性能近红外发射
- DOI:
10.1016/j.jlumin.2020.117313 - 发表时间:
2020 - 期刊:
- 影响因子:3.6
- 作者:
Shaohua Meng;Guoying Zhao;Jingshan Hou;Yufeng Liu;Yanyan Guo;Yongzheng Fang;Yan Zhou;Jun Zou - 通讯作者:
Jun Zou
Characterization and immune function of the interferon-β promoter stimulator-1 in the barbel chub, Squaliobarbus curriculus
触须鲢、Squaliobarbus 课程中干扰素-β 启动子刺激物 1 的特征和免疫功能
- DOI:
10.1016/j.dci.2019.103571 - 发表时间:
2020 - 期刊:
- 影响因子:2.9
- 作者:
Xin Zhao;Tiaoyi Xiao;Shengzhen Jin;Jing'an Wang;Junya Wang;Hong Luo;Rui Li;Tong Sun;Jun Zou;Yaoguo Li - 通讯作者:
Yaoguo Li
Fourier-transform spectrometer chip covering visible band on silica planar waveguide
覆盖二氧化硅平面波导可见光波段的傅里叶变换光谱仪芯片
- DOI:
10.1016/j.optcom.2019.124599 - 发表时间:
2020-02 - 期刊:
- 影响因子:2.4
- 作者:
Xiao Ma;Jun Zou;Qiongchan Shao;Mingyu Li;Jian-Jun He - 通讯作者:
Jian-Jun He
Jun Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Zou', 18)}}的其他基金
Collaborative Research: Fast Spectrally-Encoded Photoacoustic Microscopy for Multi-Parameter Bioenergetic Characterization of Heterogeneous Cancer Cells
合作研究:快速光谱编码光声显微镜用于异质癌细胞的多参数生物能表征
- 批准号:
2036134 - 财政年份:2021
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Characterization and Dynamics Modeling of Stomatal Function in Plants
合作研究:植物气孔功能的多尺度表征和动力学建模
- 批准号:
1852184 - 财政年份:2019
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
- 批准号:
1809710 - 财政年份:2018
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
EAGER: MEMS Co-Steered Optical and Acoustic Dual Modal Communication and Ranging Devices for Underwater Vehicles
EAGER:用于水下航行器的 MEMS 协同引导光学和声学双模通信和测距设备
- 批准号:
1748161 - 财政年份:2017
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
Collaborative Research/IDBR: High-Throughput Measurement of Oxygen Consumption Rates of Single Cells Using Wide-Field Optical-Resolution Photoacoustic Microscopy
合作研究/IDBR:使用宽视场光学分辨率光声显微镜高通量测量单细胞的耗氧率
- 批准号:
1255921 - 财政年份:2013
- 资助金额:
$ 40.69万 - 项目类别:
Continuing Grant
MEMS-Switched Acoustic Delay-Lines Microsystems for Advanced Ultrasonic Imaging Applications
用于高级超声成像应用的 MEMS 开关声学延迟线微系统
- 批准号:
1131758 - 财政年份:2011
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
Development of leucocyte cell lines for immunological research in teleost fish
用于硬骨鱼免疫学研究的白细胞系的开发
- 批准号:
G0800725/1 - 财政年份:2009
- 资助金额:
$ 40.69万 - 项目类别:
Research Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Development of large-scale sequence-function relationship using in situ optical sequencing
使用原位光学测序开发大规模序列-功能关系
- 批准号:
10575350 - 财政年份:2023
- 资助金额:
$ 40.69万 - 项目类别:
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10541683 - 财政年份:2022
- 资助金额:
$ 40.69万 - 项目类别:
GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects
GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件
- 批准号:
2240352 - 财政年份:2022
- 资助金额:
$ 40.69万 - 项目类别:
Standard Grant
Optical management technology for high efficiency solar cells with large-scale self-organized nano texturing
大规模自组织纳米织构高效太阳能电池光管理技术
- 批准号:
22K04998 - 财政年份:2022
- 资助金额:
$ 40.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microscope system for large scale optical imaging of neuronal activity using kilohertz frame rates
使用千赫兹帧速率对神经元活动进行大规模光学成像的显微镜系统
- 批准号:
10384932 - 财政年份:2022
- 资助金额:
$ 40.69万 - 项目类别:
Large scale technology demonstration at CERN of a UK developed optical readout for two-phase LAr Neutrino Detectors
英国开发的两相 LAr 中微子探测器光学读出器在 CERN 进行大规模技术演示
- 批准号:
ST/T007265/1 - 财政年份:2020
- 资助金额:
$ 40.69万 - 项目类别:
Research Grant
High-throughput optical investigation into intact large-scale nervous systems for Alzheimers disease
对阿尔茨海默病的完整大规模神经系统进行高通量光学研究
- 批准号:
10390770 - 财政年份:2019
- 资助金额:
$ 40.69万 - 项目类别:
High-throughput optical investigation into intact large-scale nervous systems for Alzheimers disease
对阿尔茨海默病的完整大规模神经系统进行高通量光学研究
- 批准号:
10782614 - 财政年份:2019
- 资助金额:
$ 40.69万 - 项目类别:
Development of magneto-photonic devices for large-scale optical communication systems
大规模光通信系统磁光子器件的开发
- 批准号:
19H02190 - 财政年份:2019
- 资助金额:
$ 40.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)