Collaborative Research: Multiscale Characterization and Dynamics Modeling of Stomatal Function in Plants
合作研究:植物气孔功能的多尺度表征和动力学建模
基本信息
- 批准号:1852184
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research that will improve our understanding of the functions of stomata, the micro-size pores in plant leaf surfaces. As the gatekeeper of carbon dioxide and water vapor exchange between plants and their surrounding environment, stomata are not only crucial to the health of the individual plants, but also have a direct and global impact on the evolution of our entire ecosystem. However, currently our understanding of stomatal movement and function is limited by the conventional strategies that only captured static, averaged, and long-term macro scale behaviors of stomata. Little is known about the qualitative characteristics of stomata behavior and functions at the micro-scale, and their correlation with the underlying physiological processes of the host plant. This award supports fundamental research to create a multiscale dynamics modeling framework centered on instantaneous stomatal movement. Success of this research will create a unique, powerful tool for stomata studies and a game-changing sensing device for monitoring and controlling plants' physiological activities, opening up and enabling a wide-range of fundamental biological research (e.g., defending mechanism of plants against insect attack, plant-environment interaction) and frontier agricultural applications (e.g., optimal crop growth control, rapid genotype to phenotype transition). Thus, results from this research will benefit both the U.S. society and the economy. The multidisciplinary nature of the research across dynamic system modeling and diagnostics, micro-electro-mechanical systems, and plant biology will help to attract and broaden participations of underrepresented groups in engineering and science fields, and positively impact engineering and science education. The multiscale characterization and modeling of stomatal movement can provide the tools needed for revealing the missing links between the internal molecular dynamics and the external cellular movement involved in stomatal regulation, and for mapping and correlating biomechanical evolutions of stomata and their underneath genetic roots. However, scientific challenges are yet to be addressed to establish such a modeling framework. The research team will create a biophysics-based multiscale stomatal dynamics model that links and correlates subcellular mechanical evolutions to microscale cellular activities during stomatal movement. The modeling approach will be built upon a novel atomic force microscope technique to quantitatively map nanomechanical evolutions during single stoma movement, and one-of-a-kind miniaturized sensors to measure the water vapor and electrical potential variations caused by the stomata movements. They will also identify, evaluate, and optimize the stomatal dynamics model through experiments, by using maize and Arabidopsis thaliana as example systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款将支持研究,以提高我们对气孔(植物叶表面中的微型毛孔)功能的理解。作为植物及其周围环境之间二氧化碳和水蒸气交换的看门人,气孔不仅对单个植物的健康至关重要,而且对我们整个生态系统的演变产生了直接和全球的影响。但是,目前,我们对气孔运动和功能的理解受到只捕获静态,平均和长期宏观尺度行为的传统策略的限制。对于微观尺度上的气孔行为和功能的定性特征以及它们与宿主植物的基本生理过程的相关性,知之甚少。该奖项支持基本研究,以创建一个以瞬时气孔运动为中心的多尺度动力学建模框架。 Success of this research will create a unique, powerful tool for stomata studies and a game-changing sensing device for monitoring and controlling plants' physiological activities, opening up and enabling a wide-range of fundamental biological research (e.g., defending mechanism of plants against insect attack, plant-environment interaction) and frontier agricultural applications (e.g., optimal crop growth control, rapid genotype to phenotype transition).因此,这项研究的结果将使美国社会和经济受益。研究跨动态系统建模和诊断,微机械系统以及植物生物学的多学科性质将有助于吸引和扩大代表性不足的工程和科学领域的参与,并对工程和科学教育产生积极影响。气孔运动的多尺度表征和建模可以提供揭示内部分子动力学与气孔调节所涉及的外部细胞运动之间缺少联系的工具,以及映射和相关的气孔及其在遗传根下的生物力学演变。但是,要建立这样的建模框架,尚待解决科学挑战。研究团队将创建一个基于生物物理学的多尺度气孔动力学模型,该模型将亚细胞机械演变与气孔运动期间的微观细胞活性联系起来。该建模方法将建立在新型的原子力显微镜技术上,以在单骨运动过程中定量地绘制纳米力学的演变,并在单基因的微型传感器上进行定量绘制纳米力学的发展,以测量由气孔运动引起的水蒸气和电势变化。他们还将通过使用玉米和拟南芥作为示例系统来确定,评估和优化的气孔动态模型。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准通过评估来进行评估的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new high-frequency photoacoustic sensing probe using silicon acoustic delay lines
使用硅声延迟线的新型高频光声传感探头
- DOI:10.1117/12.2582745
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ustun, Arif Kivanc;Zou, Jun
- 通讯作者:Zou, Jun
Integration of microlenses on surface-micromachined optical ultrasound transducer array to improve detection sensitivity for parallel data readout
将微透镜集成在表面微机械光学超声换能器阵列上,以提高并行数据读出的检测灵敏度
- DOI:10.1364/ol.476774
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Yan, Zhiyu;Zou, Jun
- 通讯作者:Zou, Jun
Large-scale 2D Surface-Micromachined Optical Ultrasound Transducer (SMOUT) array for 3D computed tomography
用于 3D 计算机断层扫描的大型 2D 表面微机械光学超声换能器 (SMOUT) 阵列
- DOI:10.1117/12.2649277
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yan, Zhiyu;Zou, Jun
- 通讯作者:Zou, Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Zou其他文献
A recommender system based on Belief Propagation over Pairwise Markov Random Fields
基于成对马尔可夫随机场置信传播的推荐系统
- DOI:
10.1109/allerton.2012.6483287 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Erman Ayday;Jun Zou;Arash Einolghozati;F. Fekri - 通讯作者:
F. Fekri
Modular Soft Robotics: Modular Units, Connection Mechanisms, and Applications
模块化软机器人:模块化单元、连接机制和应用
- DOI:
10.1002/aisy.201900166 - 发表时间:
2020-04 - 期刊:
- 影响因子:7.4
- 作者:
Chao Zhang;Pingan Zhu;Yanqiao Lin;Zhongdong Jiao;Jun Zou - 通讯作者:
Jun Zou
Model order reduction of an electro-quasistatic problem using CLN method
使用 CLN 方法降低电准静态问题的模型阶数
- DOI:
10.1016/j.finel.2024.104185 - 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Wei Chen;T. Henneron;S. Clénet;T. Delagnes;Jun Zou - 通讯作者:
Jun Zou
Fingertip Non-Contact Optoacoustic Sensor for Near-Distance Ranging and Thickness Differentiation for Robotic Grasping*
用于机器人抓取的近距离测距和厚度区分的指尖非接触式光声传感器*
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cheng Fang;Di Wang;Dezhen Song;Jun Zou - 通讯作者:
Jun Zou
Photoluminescence and stress-luminescence of non-piezoelectric ZnS: Cu amorphous materials
非压电ZnS:Cu非晶材料的光致发光和应力发光
- DOI:
10.1016/j.matlet.2018.02.097 - 发表时间:
2018 - 期刊:
- 影响因子:3
- 作者:
Huilin You;Jiangping Ma;Zheng Wu;Yanmin Jia;Jun Zou - 通讯作者:
Jun Zou
Jun Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Zou', 18)}}的其他基金
Large-Scale Optical Ultrasound Transducer Arrays for High-Speed and High-Resolution 3D Acoustic Tomography
用于高速、高分辨率 3D 声学断层扫描的大型光学超声换能器阵列
- 批准号:
2330199 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: Fast Spectrally-Encoded Photoacoustic Microscopy for Multi-Parameter Bioenergetic Characterization of Heterogeneous Cancer Cells
合作研究:快速光谱编码光声显微镜用于异质癌细胞的多参数生物能表征
- 批准号:
2036134 - 财政年份:2021
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
- 批准号:
1809710 - 财政年份:2018
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
EAGER: MEMS Co-Steered Optical and Acoustic Dual Modal Communication and Ranging Devices for Underwater Vehicles
EAGER:用于水下航行器的 MEMS 协同引导光学和声学双模通信和测距设备
- 批准号:
1748161 - 财政年份:2017
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research/IDBR: High-Throughput Measurement of Oxygen Consumption Rates of Single Cells Using Wide-Field Optical-Resolution Photoacoustic Microscopy
合作研究/IDBR:使用宽视场光学分辨率光声显微镜高通量测量单细胞的耗氧率
- 批准号:
1255921 - 财政年份:2013
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
MEMS-Switched Acoustic Delay-Lines Microsystems for Advanced Ultrasonic Imaging Applications
用于高级超声成像应用的 MEMS 开关声学延迟线微系统
- 批准号:
1131758 - 财政年份:2011
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Development of leucocyte cell lines for immunological research in teleost fish
用于硬骨鱼免疫学研究的白细胞系的开发
- 批准号:
G0800725/1 - 财政年份:2009
- 资助金额:
$ 23.78万 - 项目类别:
Research Grant
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全固态锂电池硫化物固体电解质的合成、调控及多尺度中子散射研究
- 批准号:12375301
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
蓝斑-内嗅皮质-海马神经环路在阿尔茨海默病早期进程中的改变及其机制的多模态多尺度研究
- 批准号:32371197
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤微环境-伤害性感觉神经多尺度串扰调控肿瘤免疫逃逸的机制及应用研究
- 批准号:82372862
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
针对人工表面等离激元器件多尺度电磁隐身问题的高效DGTD-HDGTD混合时域算法的研究
- 批准号:62301133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Standard Grant