Simulating Large-Scale Conformational Rearrangements and Reaction Kinetics Profiles in DNA Polymerase Beta to Interpret DNA Synthesis Fidelity Mechanisms

模拟 DNA 聚合酶 Beta 中的大规模构象重排和反应动力学曲线,以解释 DNA 合成保真度机制

基本信息

  • 批准号:
    0316771
  • 负责人:
  • 金额:
    $ 83.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Studying large-scale, long-time biological processes such as enzyme catalysis, protein folding, and macromolecular assembly is a challenging task in computational biophysics. Since these processes occur over microseconds to seconds, much beyond the scope of traditional dynamics simulations, new techniques are needed to provide insights into detailed, local motions to supplement experiments. In this project, funded jointly by the Molecular Biophysics Program in the Division of Molecular and Cellular Biosciences and the Computational Math Program in the Division of Mathematical Sciences, the PI will develop, compare, and apply two rigorous and complementary path-generation methods, Elber's stochastic path approach (SPA) and Chandler's transition path sampling (TPS), to study the conformational transitions between closed and open states for human DNA polymerase beta (pol beta) complexed with DNA template/primer. This millisecond process is thought to be key in maintaining DNA synthesis fidelity. With these new tools, the PI will pursue several fundamental biological questions related to DNA synthesis fidelity, including the identification of slow conformational steps that steer the enzyme toward the chemistry-competent state and determination of rate-limiting steps in the enzyme's pathway. Atomic-level mechanistic insights, as well as associated free-energy barriers, will be delineated and related to enzyme function. The methodology developed is widely applicable to many other fundamental processes in molecular biophysics, and the biological findings will provide atomic-level interpretations to puzzling experimental variations in catalytic rates and error frequencies. Thus, the biological findings will help interpret fundamental fidelity mechanisms employed by DNA polymerases to replicate and repair DNA faithfully from one generation to the next.DNA polymerases maintain genomic integrity in the cell by replicating DNA and repairing damages in the genome from generation to generation. The goal of this project is to dissect the conformational aspects of the selectivity and fidelity of DNA repair process. Fidelity refers to the ability of DNA polymerases to discriminate among the various nucleotide building blocks as each base unit is synthesized and choose the correct base (parent strand's partner) for insertion and extension. The PI will employ modeling and simulation by novel path-generation schemes that can capture large-scale long-time processes to study these polymerase mechanisms to explain fidelity. Such information has important ramifications to our understanding the fundamental DNA synthesis and repair fidelity processes. This project represents a collaboration with theoreticians and experimentalists with expertise in nucleic-acid structure, polymerase mechanisms, and simulation methodology, and relies on solid groundwork in both methodology for biomolecular modeling. The tools developed are also widely applicable to many other important problems in biology. Involving undergraduate and graduate students and postdoctoral fellows, the project offers important multidisciplinary educational and training opportunities to young scientists, including women and minorities, in molecular modeling and computational biology, fields of growing importance to science and society.
研究大规模、长时间的生物过程,如酶催化、蛋白质折叠和大分子组装,是计算生物物理学中一项具有挑战性的任务。由于这些过程发生在微秒到几秒之间,远远超出了传统动力学模拟的范围,因此需要新的技术来提供对详细的局部运动的洞察,以补充实验。在分子与细胞生物科学系分子生物物理计划和数学科学部计算数学计划的共同资助下,PI将发展、比较和应用两种严格和互补的路径生成方法:Elber的随机路径方法(SPA)和Chandler的转移路径抽样(TPS),以研究与DNA模板/引物复合的人DNA聚合酶β(Pol Beta)的闭合和开放状态之间的构象转变。这一毫秒级的过程被认为是维持DNA合成保真度的关键。利用这些新工具,PI将解决几个与DNA合成保真度相关的基本生物学问题,包括识别引导酶进入化学活性状态的缓慢构象步骤,以及确定酶途径中的限速步骤。原子级的机械论见解,以及相关的自由能障碍,将被描绘出来并与酶的功能相关。所开发的方法广泛适用于分子生物物理学中的许多其他基本过程,生物学发现将为令人困惑的催化速率和误差频率的实验变化提供原子水平的解释。因此,这些生物学发现将有助于解释DNA聚合酶用来从一代到下一代忠实地复制和修复DNA的基本保真机制。DNA聚合酶通过复制DNA和修复基因组中的损伤来维持细胞中基因组的完整性。这个项目的目标是剖析DNA修复过程的选择性和保真度的构象方面。保真度是指DNA聚合酶在合成每个碱基单位时区分不同的核苷酸组成单元,并选择正确的碱基(亲链的伴侣)进行插入和延伸的能力。PI将通过新的路径生成方案进行建模和模拟,这些方案可以捕获大规模的长时间过程来研究这些聚合酶机制,以解释保真度。这些信息对我们理解基本的DNA合成和修复保真度过程有重要的影响。这个项目代表了与具有核酸结构、聚合酶机制和模拟方法学专业知识的理论家和实验学家的合作,并依赖于生物分子建模的两种方法学的坚实基础。所开发的工具也广泛适用于生物学中的许多其他重要问题。该项目涉及本科生和研究生以及博士后研究员,为包括女性和少数民族在内的年轻科学家提供了重要的多学科教育和培训机会,涉及分子建模和计算生物学,这两个领域对科学和社会的重要性越来越大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamar Schlick其他文献

Nucleosome Clutches in Chromatin are Tightly Regulated by Nucleosome Positions and Linker Histone Density
  • DOI:
    10.1016/j.bpj.2019.11.3370
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Stephanie Portillo;Lucille H. Tsao;Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Biophysical Journal, Volume 99
生物物理学杂志,第 99 卷
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Modeling and Simulating RNA: Combining Structural, Dynamic, and Evolutionary Perspectives for Coronavirus Applications
RNA 建模和模拟:结合冠状病毒应用的结构、动态和进化视角
Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data
从二维染色体构象捕获数据重建三维基因组结构的技术和挑战
  • DOI:
    10.1016/j.ceb.2023.102209
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Zilong Li;Stephanie Portillo-Ledesma;Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Structural Bioinformatics : RAGPOOLS : RNA-As-Graph-Pools – A Web Server for Assisting the Design of Structured RNA Pools for In Vitro Selection
结构生物信息学:RAGPOOLS:RNA-As-Graph-Pools – 用于协助设计用于体外选择的结构化 RNA 库的 Web 服务器
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kim;Jin Sup Shin;Shereef Elmetwaly;H. H. Gan;Tamar Schlick
  • 通讯作者:
    Tamar Schlick

Tamar Schlick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamar Schlick', 18)}}的其他基金

MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
  • 批准号:
    2330628
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
  • 批准号:
    2151777
  • 财政年份:
    2022
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
RAPID: Exploring Covid-19 RNA Viral Targets By Graph-Theory-Based Modeling
RAPID:通过基于图论的建模探索 Covid-19 RNA 病毒靶点
  • 批准号:
    2030377
  • 财政年份:
    2020
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Workshop Proposal: IMAG Futures Meeting
研讨会提案:IMAG 未来会议
  • 批准号:
    1008193
  • 财政年份:
    2009
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Computational Methods for Tertiary RNA Folding and Novel RNA Design
RNA 三级折叠和新型 RNA 设计的计算方法
  • 批准号:
    0727001
  • 财政年份:
    2007
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Toward RNA Genomics: A Pilot Study in the Analysis, Design, and Prediction of RNA Structures
RNA 基因组学:RNA 结构分析、设计和预测的初步研究
  • 批准号:
    0201160
  • 财政年份:
    2002
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
International Workshop: Methods for Macromolecular Modeling
国际研讨会:大分子建模方法
  • 批准号:
    0071877
  • 财政年份:
    2000
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Postdoc: Brownian Dynamics of DNA Slithering
博士后:DNA滑动的布朗动力学
  • 批准号:
    9704681
  • 财政年份:
    1997
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
New Algorithms for Large Time-Step Molecular Dynamics Simulations and their Application to Protein and Nucleic Acids
大时间步长分子动力学模拟的新算法及其在蛋白质和核酸中的应用
  • 批准号:
    9310295
  • 财政年份:
    1993
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
PYI: Computation of Macromolecular Structure
PYI:高分子结构的计算
  • 批准号:
    9157582
  • 财政年份:
    1991
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
  • 批准号:
    2422696
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了