Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
基本信息
- 批准号:10363601
- 负责人:
- 金额:$ 69.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-25 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsArtificial IntelligenceBiological ModelsCancer DetectionCancerousCause of DeathClinicalDataDetectionDevelopmentDiagnosisDiscipline of Nuclear MedicineDiseaseFluorineGoalsHumanHybridsImageImage AnalysisImaging technologyInfiltrationInstitutionLeadLesionLinkMalignant NeoplasmsManualsManufacturer NameMeasurementMeasuresMedicalMetabolicMethodsModelingModernizationMorbidity - disease rateOutcomePathway interactionsPatient-Focused OutcomesPatientsPerformancePhysiciansPositron-Emission TomographyProtocols documentationPublic HealthPublishingResolutionScreening for cancerSiteStagingSystemTimeTissuesTranslationsUnited StatesVariantVendorX-Ray Computed Tomographybasecancer diagnosiscancer imagingcancer recurrencedeep learning modeldeep neural networkdetection limitdetection methodfluorodeoxyglucoseimage reconstructionimaging systemimprovedindustry partnerintelligent algorithmloss of functionlymph nodesnovelopen dataplatform-independentradiologistreconstructionsimulationtooltumor
项目摘要
Project summary
Detection and diagnosis of smaller and earlier-stage cancers significantly improves a patient's chances of
survival. Positron emission tomography (PET) imaging using fluorine 18–fluorodeoxyglucose (FDG-PET)
provides a functional or metabolic assessment of normal versus cancerous tissues, and since 2000 has been
widely used clinically for the detection and diagnosis of many cancers. Studies over a decade ago by our group
and others had shown that it was feasible to both measure and improve the detection ability of FDG-PET
imaging for cancer by adjusting acquisition and image reconstruction parameters. This could be done
systematically by evaluating the effect on observer models that replicated human performance (i.e. radiologists
or nuclear medicine physicians). At the time, however, it is challenging to understand how this varied across
systems with different resolutions, sensitivities, and reconstruction algorithms, or if they were operated
differently across imaging sites.
Over the last decade there have been dramatic improvements in scanner resolution, sensitivity, and
reconstruction algorithms, as well as the routine adoption of time-of-flight PET imaging. In parallel there has
been an improved understanding and adoption of model observers, as well as pathways for adoption or
harmonization of methods across multiple PET manufacturers and imaging sites. Most recently there has been
the development of machine intelligence algorithms, such deep neural networks, for both image reconstruction
and image analysis, which have the potential to improve performance.
We are proposing to take advantage of these developments to characterize, optimize, and harmonize cancer
detection with PET imaging. The three specific aims are: (1) Develop methods for characterization (i.e.
measurement) of detection performance for FDG PET imaging. (2) Using a model system calibrated to a
modern physical system we will then determine how to optimize cancer detection as a function of acquisition
and image reconstruction parameters. (3) Finally we will develop a platform-independent (vendor agnostic)
standard that can be applied across systems and imaging sites. This will lead to a roadmap for multi-site and
multi-vendor implementation approaches that optimizing cancer detectability and thus improved patient
outcomes.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
- DOI:
10.1016/j.acra.2022.09.018 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski - 通讯作者:
Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
- DOI:
10.1007/s00259-016-3427-0 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:7.600
- 作者:
Mathieu Hatt;Florent Tixier;Larry Pierce;Paul E. Kinahan;Catherine Cheze Le Rest;Dimitris Visvikis - 通讯作者:
Dimitris Visvikis
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
- DOI:
10.1016/j.ijrobp.2025.01.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.500
- 作者:
Mark H. Nguyen;Peter G. Beidler;Joseph Tsai;August Anderson;Daniel Chen;Paul E. Kinahan;John Kang - 通讯作者:
John Kang
Multimodality molecular imaging of the lung
- DOI:
10.1007/s40336-014-0084-9 - 发表时间:
2014-10-16 - 期刊:
- 影响因子:1.600
- 作者:
Delphine L. Chen;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10579947 - 财政年份:2022
- 资助金额:
$ 69.08万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 69.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 69.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 69.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 69.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 69.08万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 69.08万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 69.08万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 69.08万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 69.08万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 69.08万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 69.08万 - 项目类别:
Standard Grant














{{item.name}}会员




